Public Types | Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > Class Template Reference

A conjugate gradient solver for sparse (or dense) least-square problems. More...

#include <LeastSquareConjugateGradient.h>

Public Types

typedef _MatrixType MatrixType
 
typedef _Preconditioner Preconditioner
 
typedef MatrixType::RealScalar RealScalar
 
typedef MatrixType::Scalar Scalar
 

Public Member Functions

template<typename Rhs , typename Dest >
void _solve_vector_with_guess_impl (const Rhs &b, Dest &x) const
 
 LeastSquaresConjugateGradient ()
 
template<typename MatrixDerived >
 LeastSquaresConjugateGradient (const EigenBase< MatrixDerived > &A)
 
 ~LeastSquaresConjugateGradient ()
 

Private Types

typedef IterativeSolverBase< LeastSquaresConjugateGradientBase
 

Private Member Functions

const ActualMatrixType & matrix () const
 

Private Attributes

RealScalar m_error
 
ComputationInfo m_info
 
bool m_isInitialized
 
Index m_iterations
 

Detailed Description

template<typename _MatrixType, typename _Preconditioner>
class Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >

A conjugate gradient solver for sparse (or dense) least-square problems.

This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. Otherwise, the SparseLU or SparseQR classes might be preferable. The matrix A and the vectors x and b can be either dense or sparse.

Template Parameters
_MatrixTypethe type of the matrix A, can be a dense or a sparse matrix.
_Preconditionerthe type of the preconditioner. Default is LeastSquareDiagonalPreconditioner

\implsparsesolverconcept

The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.

This class can be used as the direct solver classes. Here is a typical usage example:

int m=1000000, n = 10000;
VectorXd x(n), b(m);
SparseMatrix<double> A(m,n);
// fill A and b
LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
lscg.compute(A);
x = lscg.solve(b);
std::cout << "#iterations: " << lscg.iterations() << std::endl;
std::cout << "estimated error: " << lscg.error() << std::endl;
// update b, and solve again
x = lscg.solve(b);

By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.

See also
class ConjugateGradient, SparseLU, SparseQR

Definition at line 98 of file LeastSquareConjugateGradient.h.

Member Typedef Documentation

◆ Base

template<typename _MatrixType , typename _Preconditioner >
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::Base
private

Definition at line 151 of file LeastSquareConjugateGradient.h.

◆ MatrixType

template<typename _MatrixType , typename _Preconditioner >
typedef _MatrixType Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::MatrixType

Definition at line 158 of file LeastSquareConjugateGradient.h.

◆ Preconditioner

template<typename _MatrixType , typename _Preconditioner >
typedef _Preconditioner Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::Preconditioner

Definition at line 161 of file LeastSquareConjugateGradient.h.

◆ RealScalar

template<typename _MatrixType , typename _Preconditioner >
typedef MatrixType::RealScalar Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::RealScalar

Definition at line 160 of file LeastSquareConjugateGradient.h.

◆ Scalar

template<typename _MatrixType , typename _Preconditioner >
typedef MatrixType::Scalar Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::Scalar

Definition at line 159 of file LeastSquareConjugateGradient.h.

Constructor & Destructor Documentation

◆ LeastSquaresConjugateGradient() [1/2]

template<typename _MatrixType , typename _Preconditioner >
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::LeastSquaresConjugateGradient ( )
inline

Default constructor.

Definition at line 166 of file LeastSquareConjugateGradient.h.

◆ LeastSquaresConjugateGradient() [2/2]

template<typename _MatrixType , typename _Preconditioner >
template<typename MatrixDerived >
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::LeastSquaresConjugateGradient ( const EigenBase< MatrixDerived > &  A)
inlineexplicit

Initialize the solver with matrix A for further Ax=b solving.

This constructor is a shortcut for the default constructor followed by a call to compute().

Warning
this class stores a reference to the matrix A as well as some precomputed values that depend on it. Therefore, if A is changed this class becomes invalid. Call compute() to update it with the new matrix A, or modify a copy of A.

Definition at line 179 of file LeastSquareConjugateGradient.h.

◆ ~LeastSquaresConjugateGradient()

template<typename _MatrixType , typename _Preconditioner >
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::~LeastSquaresConjugateGradient ( )
inline

Definition at line 181 of file LeastSquareConjugateGradient.h.

Member Function Documentation

◆ _solve_vector_with_guess_impl()

template<typename _MatrixType , typename _Preconditioner >
template<typename Rhs , typename Dest >
void Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::_solve_vector_with_guess_impl ( const Rhs &  b,
Dest &  x 
) const
inline

Definition at line 185 of file LeastSquareConjugateGradient.h.

◆ matrix()

template<typename _MatrixType , typename _Preconditioner >
const ActualMatrixType& Eigen::IterativeSolverBase< Derived >::matrix
inlineprivate

Definition at line 419 of file IterativeSolverBase.h.

Member Data Documentation

◆ m_error

template<typename _MatrixType , typename _Preconditioner >
RealScalar Eigen::IterativeSolverBase< Derived >::m_error
mutableprivate

Definition at line 436 of file IterativeSolverBase.h.

◆ m_info

template<typename _MatrixType , typename _Preconditioner >
ComputationInfo Eigen::IterativeSolverBase< Derived >::m_info
mutableprivate

Definition at line 438 of file IterativeSolverBase.h.

◆ m_isInitialized

template<typename _MatrixType , typename _Preconditioner >
bool Eigen::SparseSolverBase< Derived >::m_isInitialized
mutableprivate

Definition at line 119 of file SparseSolverBase.h.

◆ m_iterations

template<typename _MatrixType , typename _Preconditioner >
Index Eigen::IterativeSolverBase< Derived >::m_iterations
mutableprivate

Definition at line 437 of file IterativeSolverBase.h.


The documentation for this class was generated from the following file:
b
Scalar * b
Definition: benchVecAdd.cpp:17
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
n
int n
Definition: BiCGSTAB_simple.cpp:1
A
Definition: test_numpy_dtypes.cpp:298
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1


gtsam
Author(s):
autogenerated on Thu Dec 19 2024 04:09:46