math/tridiagonal-matrix.hpp
Go to the documentation of this file.
1 //
2 // Copyright (c) 2024 INRIA
3 //
4 
5 #ifndef __pinocchio_math_tridiagonal_matrix_hpp__
6 #define __pinocchio_math_tridiagonal_matrix_hpp__
7 
8 #include "pinocchio/fwd.hpp"
9 #include <Eigen/Dense>
10 
11 namespace pinocchio
12 {
13  template<typename Scalar, int Options = 0>
15 
16  template<typename _Scalar, int _Options>
17  struct traits<TridiagonalSymmetricMatrixTpl<_Scalar, _Options>>
18  {
19  typedef _Scalar Scalar;
20  enum
21  {
22  Options = _Options
23  };
24  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Options> PlainMatrixType;
25  };
26 
27  template<typename TridiagonalSymmetricMatrix, typename MatrixDerived>
29 
30  template<typename TridiagonalSymmetricMatrix, typename MatrixDerived>
31  struct traits<
32  TridiagonalSymmetricMatrixApplyOnTheRightReturnType<TridiagonalSymmetricMatrix, MatrixDerived>>
33  : public traits<TridiagonalSymmetricMatrix>
34  {
35  };
36 
37  template<typename MatrixDerived, typename TridiagonalSymmetricMatrix>
39 
40  template<typename MatrixDerived, typename TridiagonalSymmetricMatrix>
41  struct traits<
42  TridiagonalSymmetricMatrixApplyOnTheLeftReturnType<MatrixDerived, TridiagonalSymmetricMatrix>>
43  : public traits<TridiagonalSymmetricMatrix>
44  {
45  };
46 
47  template<typename TridiagonalSymmetricMatrix>
49 
50  template<typename TridiagonalSymmetricMatrix>
51  struct traits<TridiagonalSymmetricMatrixInverse<TridiagonalSymmetricMatrix>>
52  : public traits<TridiagonalSymmetricMatrix>
53  {
54  };
55 
56  template<typename TridiagonalSymmetricMatrixInverse, typename MatrixDerived>
58 
59  template<typename TridiagonalSymmetricMatrixInverse, typename MatrixDerived>
62  MatrixDerived>> : public traits<TridiagonalSymmetricMatrixInverse>
63  {
64  };
65 } // namespace pinocchio
66 
67 namespace Eigen
68 {
69  namespace internal
70  {
71 
72  template<typename Scalar, int Options>
73  struct traits<pinocchio::TridiagonalSymmetricMatrixTpl<Scalar, Options>>
74  : public traits<typename pinocchio::traits<
75  pinocchio::TridiagonalSymmetricMatrixTpl<Scalar, Options>>::PlainMatrixType>
76  {
78  typedef typename Base::PlainMatrixType ReturnType;
79  enum
80  {
81  Flags = 0
82  };
83  };
84 
85  template<typename TridiagonalSymmetricMatrix, typename MatrixDerived>
86  struct traits<pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType<
87  TridiagonalSymmetricMatrix,
88  MatrixDerived>>
89  : public traits<
90  typename pinocchio::traits<pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType<
91  TridiagonalSymmetricMatrix,
92  MatrixDerived>>::PlainMatrixType>
93  {
95  TridiagonalSymmetricMatrix,
96  MatrixDerived>>
98  typedef typename Base::PlainMatrixType ReturnType;
99  enum
100  {
101  Flags = 0
102  };
103  };
104 
105  template<typename MatrixDerived, typename TridiagonalSymmetricMatrix>
106  struct traits<pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType<
107  MatrixDerived,
108  TridiagonalSymmetricMatrix>>
109  : public traits<
110  typename pinocchio::traits<pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType<
111  MatrixDerived,
112  TridiagonalSymmetricMatrix>>::PlainMatrixType>
113  {
115  MatrixDerived,
116  TridiagonalSymmetricMatrix>>
118  typedef typename Base::PlainMatrixType ReturnType;
119  enum
120  {
121  Flags = 0
122  };
123  };
124 
125  template<typename TridiagonalSymmetricMatrix>
126  struct traits<pinocchio::TridiagonalSymmetricMatrixInverse<TridiagonalSymmetricMatrix>>
127  : public traits<TridiagonalSymmetricMatrix>
128  {
129  };
130 
131  template<typename TridiagonalSymmetricMatrixInverse, typename MatrixDerived>
132  struct traits<pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType<
133  TridiagonalSymmetricMatrixInverse,
134  MatrixDerived>>
135  : public traits<typename pinocchio::traits<
136  pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType<
137  TridiagonalSymmetricMatrixInverse,
138  MatrixDerived>>::PlainMatrixType>
139  {
140  typedef pinocchio::traits<
142  TridiagonalSymmetricMatrixInverse,
143  MatrixDerived>>
145  typedef typename Base::PlainMatrixType ReturnType;
146  enum
147  {
148  Flags = 0
149  };
150  };
151 
152  } // namespace internal
153 } // namespace Eigen
154 
155 namespace pinocchio
156 {
157 
160  template<typename _Scalar, int _Options>
161  struct TridiagonalSymmetricMatrixTpl
162  : public Eigen::ReturnByValue<TridiagonalSymmetricMatrixTpl<_Scalar, _Options>>
163  {
164  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
166  typedef _Scalar Scalar;
167  enum
168  {
169  Options = _Options
170  };
171 
172  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, Options> CoeffVectorType;
174 
176  explicit TridiagonalSymmetricMatrixTpl(const Eigen::DenseIndex size)
177  : m_size(size)
178  , m_diagonal(size)
179  , m_sub_diagonal(size - 1)
180  {
181  assert(size > 0 && "size should be greater than 0.");
182  }
183 
184  bool operator==(const TridiagonalSymmetricMatrixTpl & other) const
185  {
186  if (this == &other)
187  return true;
188  return diagonal() == other.diagonal() && subDiagonal() == other.subDiagonal();
189  }
190 
191  bool operator!=(const TridiagonalSymmetricMatrixTpl & other) const
192  {
193  return !(*this == other);
194  }
195 
197  {
199  }
200 
202  {
203  return m_diagonal;
204  }
205  const CoeffVectorType & diagonal() const
206  {
207  return m_diagonal;
208  }
210  {
211  return m_sub_diagonal;
212  }
213  const CoeffVectorType & subDiagonal() const
214  {
215  return m_sub_diagonal;
216  }
217 
218  void setIdentity()
219  {
220  diagonal().setOnes();
221  subDiagonal().setZero();
222  }
223 
224  bool isIdentity(const Scalar prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
225  {
226  return subDiagonal().isZero(prec) && diagonal().isOnes(prec);
227  }
228 
229  void setZero()
230  {
231  diagonal().setZero();
232  subDiagonal().setZero();
233  }
234 
235  bool isZero(const Scalar prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
236  {
237  return subDiagonal().isZero(prec) && diagonal().isZero(prec);
238  }
239 
240  void setRandom()
241  {
242  diagonal().setRandom();
243  subDiagonal().setRandom();
244  }
245 
246  bool isDiagonal(const Scalar prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
247  {
248  return subDiagonal().isZero(prec);
249  }
250 
251  template<typename VectorCoeffType>
252  void setDiagonal(const Eigen::MatrixBase<VectorCoeffType> & diagonal_coefficients)
253  {
254  PINOCCHIO_CHECK_ARGUMENT_SIZE(diagonal_coefficients.size(), cols());
255  static_assert(
256  VectorCoeffType::IsVectorAtCompileTime,
257  "VectorCoeffType should be a vector type at compile time");
258 
259  diagonal() = diagonal_coefficients;
260  subDiagonal().setZero();
261  }
262 
263  EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
264  {
265  return m_size;
266  }
267  EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
268  {
269  return m_size;
270  }
271 
273  {
274  return PlainMatrixType(*this);
275  }
276 
277  template<typename ResultType>
278  inline void evalTo(ResultType & result) const
279  {
280  result.setZero();
281  result.template diagonal<1>() = subDiagonal().conjugate();
282  result.diagonal() = diagonal();
283  result.template diagonal<-1>() = subDiagonal();
284  }
285 
286  template<typename MatrixDerived>
288  applyOnTheRight(const Eigen::MatrixBase<MatrixDerived> & mat) const
289  {
291  return ReturnType(*this, mat.derived());
292  }
293 
294  template<typename MatrixDerived>
296  applyOnTheLeft(const Eigen::MatrixBase<MatrixDerived> & mat) const
297  {
299  return ReturnType(mat.derived(), *this);
300  }
301 
302  template<typename MatrixDerived>
304  operator*(const Eigen::MatrixBase<MatrixDerived> & mat) const
305  {
306  return this->applyOnTheRight(mat.derived());
307  }
308 
309  protected:
310  Eigen::DenseIndex m_size;
313  };
314 
315  template<typename LhsMatrixType, typename S, int O>
317  LhsMatrixType,
320  const Eigen::MatrixBase<LhsMatrixType> & lhs, const TridiagonalSymmetricMatrixTpl<S, O> & rhs)
321  {
322  return rhs.applyOnTheLeft(lhs);
323  }
324 
325  template<typename TridiagonalSymmetricMatrix, typename RhsMatrixType>
326  struct TridiagonalSymmetricMatrixApplyOnTheRightReturnType
327  : public Eigen::ReturnByValue<TridiagonalSymmetricMatrixApplyOnTheRightReturnType<
328  TridiagonalSymmetricMatrix,
329  RhsMatrixType>>
330  {
333 
335  const TridiagonalSymmetricMatrix & lhs, const RhsMatrixType & rhs)
336  : m_lhs(lhs)
337  , m_rhs(rhs)
338  {
339  }
340 
341  template<typename ResultType>
342  inline void evalTo(ResultType & result) const
343  {
344  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.rows(), rows());
345  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.cols(), cols());
346 
347  assert(cols() >= 1);
348  assert(rows() >= 1);
349 
350  const Eigen::DenseIndex reduced_size = cols() - 1;
351  // Main diagonal
352  result.noalias() = m_lhs.diagonal().asDiagonal() * m_rhs;
353  // Upper diagonal
354  result.topRows(reduced_size).noalias() +=
355  m_lhs.subDiagonal().conjugate().asDiagonal() * m_rhs.bottomRows(reduced_size);
356  // Sub diagonal
357  result.bottomRows(reduced_size).noalias() +=
358  m_lhs.subDiagonal().asDiagonal() * m_rhs.topRows(reduced_size);
359  }
360 
361  EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
362  {
363  return m_lhs.rows();
364  }
365  EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
366  {
367  return m_rhs.cols();
368  }
369 
370  protected:
371  const TridiagonalSymmetricMatrix & m_lhs;
372  const RhsMatrixType & m_rhs;
373  };
374 
375  template<typename LhsMatrixType, typename TridiagonalSymmetricMatrix>
377  : public Eigen::ReturnByValue<
378  TridiagonalSymmetricMatrixApplyOnTheLeftReturnType<LhsMatrixType, TridiagonalSymmetricMatrix>>
379  {
382 
384  const LhsMatrixType & lhs, const TridiagonalSymmetricMatrix & rhs)
385  : m_lhs(lhs)
386  , m_rhs(rhs)
387  {
388  }
389 
390  template<typename ResultType>
391  inline void evalTo(ResultType & result) const
392  {
393  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.rows(), rows());
394  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.cols(), cols());
395 
396  assert(cols() >= 1);
397  assert(rows() >= 1);
398 
399  const Eigen::DenseIndex reduced_size = cols() - 1;
400  // Main diagonal
401  result.noalias() = m_lhs * m_rhs.diagonal().asDiagonal();
402  // Upper diagonal
403  result.rightCols(reduced_size).noalias() +=
404  m_lhs.leftCols(reduced_size) * m_rhs.subDiagonal().conjugate().asDiagonal();
405  // Sub diagonal
406  result.leftCols(reduced_size).noalias() +=
407  m_lhs.rightCols(reduced_size) * m_rhs.subDiagonal().asDiagonal();
408  }
409 
410  EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
411  {
412  return m_lhs.rows();
413  }
414  EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
415  {
416  return m_rhs.cols();
417  }
418 
419  protected:
420  const LhsMatrixType & m_lhs;
421  const TridiagonalSymmetricMatrix & m_rhs;
422  };
423 
424  template<typename _TridiagonalSymmetricMatrix>
426  : public Eigen::ReturnByValue<TridiagonalSymmetricMatrixInverse<_TridiagonalSymmetricMatrix>>
427  {
428  typedef _TridiagonalSymmetricMatrix TridiagonalSymmetricMatrix;
431  enum
432  {
434  };
435 
436  typedef typename TridiagonalSymmetricMatrix::CoeffVectorType CoeffVectorType;
438 
443  , m_diagonal(m_size)
444  , m_sub_diagonal(m_size - 1)
445  {
446  eval();
447  }
448 
450  {
451  return tridiagonal_matrix;
452  }
453 
454  template<typename MatrixDerived>
456  applyOnTheRight(const Eigen::MatrixBase<MatrixDerived> & mat) const
457  {
459  ReturnType;
460  return ReturnType(*this, mat.derived());
461  }
462 
463  template<typename MatrixDerived>
465  operator*(const Eigen::MatrixBase<MatrixDerived> & mat) const
466  {
467  return this->applyOnTheRight(mat.derived());
468  }
469 
470  template<typename ResultType>
471  inline void evalTo(ResultType & result) const
472  {
473  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.rows(), rows());
474  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.cols(), cols());
475 
476  assert(cols() >= 1);
477  assert(rows() >= 1);
478 
479  const auto & b = m_diagonal;
480  const auto & c = tridiagonal_matrix.subDiagonal();
481  const auto & w = m_sub_diagonal;
482 
483  // Forward sweep
484  result.setIdentity();
485  for (Eigen::DenseIndex i = 1; i < m_size; ++i)
486  {
487  result.row(i).head(i) -= w[i - 1] * result.row(i - 1).head(i);
488  }
489 
490  // Backward sweep
491  result.row(m_size - 1) /= b[m_size - 1];
492  for (Eigen::DenseIndex i = m_size - 2; i >= 0; --i)
493  {
494  result.row(i) -= c[i] * result.row(i + 1);
495  result.row(i) /= b[i];
496  }
497  }
498 
499  EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
500  {
501  return m_size;
502  }
503  EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
504  {
505  return m_size;
506  }
507 
508  protected:
509  template<typename T, typename MatrixDerived>
511 
513  void eval()
514  {
515  m_diagonal = tridiagonal_matrix.diagonal();
516  m_sub_diagonal = tridiagonal_matrix.subDiagonal();
517  auto & w = m_sub_diagonal;
518  auto & b = m_diagonal;
519  const auto & c = tridiagonal_matrix.subDiagonal();
520  for (Eigen::DenseIndex i = 1; i < m_size; ++i)
521  {
522  w.coeffRef(i - 1) /= b[i - 1];
523  m_diagonal.coeffRef(i) -= w[i - 1] * c[i - 1];
524  }
525  }
526 
528  Eigen::DenseIndex m_size;
531  };
532 
533  template<typename TridiagonalSymmetricMatrixInverse, typename RhsMatrixType>
535  : public Eigen::ReturnByValue<TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType<
536  TridiagonalSymmetricMatrixInverse,
537  RhsMatrixType>>
538  {
541 
543  const TridiagonalSymmetricMatrixInverse & lhs, const RhsMatrixType & rhs)
544  : m_lhs(lhs)
545  , m_rhs(rhs)
546  {
547  }
548 
549  template<typename ResultType>
550  inline void evalTo(ResultType & result) const
551  {
552  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.rows(), rows());
553  PINOCCHIO_CHECK_ARGUMENT_SIZE(result.cols(), cols());
554 
555  assert(cols() >= 1);
556  assert(rows() >= 1);
557 
558  const Eigen::DenseIndex size = m_lhs.rows();
559  const auto & b = m_lhs.m_diagonal;
560  const auto & c = m_lhs.tridiagonal_matrix.subDiagonal();
561  const auto & w = m_lhs.m_sub_diagonal;
562 
563  // Forward sweep
564  result = m_rhs;
565  for (Eigen::DenseIndex i = 1; i < size; ++i)
566  {
567  result.row(i) -= w[i - 1] * result.row(i - 1);
568  }
569 
570  // Backward sweep
571  result.row(size - 1) /= b[size - 1];
572  for (Eigen::DenseIndex i = size - 2; i >= 0; --i)
573  {
574  result.row(i) -= c[i] * result.row(i + 1);
575  result.row(i) /= b[i];
576  }
577  }
578 
579  EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
580  {
581  return m_lhs.rows();
582  }
583  EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
584  {
585  return m_rhs.cols();
586  }
587 
588  protected:
590  const RhsMatrixType & m_rhs;
591  };
592 } // namespace pinocchio
593 
594 #endif // #ifndef __pinocchio_math_tridiagonal_matrix_hpp__
PINOCCHIO_CHECK_ARGUMENT_SIZE
#define PINOCCHIO_CHECK_ARGUMENT_SIZE(...)
Macro to check if the size of an element is equal to the expected size.
Definition: include/pinocchio/macros.hpp:216
pinocchio::TridiagonalSymmetricMatrixTpl::m_size
Eigen::DenseIndex m_size
Definition: math/tridiagonal-matrix.hpp:310
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType< MatrixDerived, TridiagonalSymmetricMatrix > >::Base
pinocchio::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType< MatrixDerived, TridiagonalSymmetricMatrix > > Base
Definition: math/tridiagonal-matrix.hpp:117
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixTpl< Scalar, Options > >::ReturnType
Base::PlainMatrixType ReturnType
Definition: math/tridiagonal-matrix.hpp:78
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::Self
TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType Self
Definition: math/tridiagonal-matrix.hpp:539
Eigen
pinocchio::TridiagonalSymmetricMatrixTpl::setDiagonal
void setDiagonal(const Eigen::MatrixBase< VectorCoeffType > &diagonal_coefficients)
Definition: math/tridiagonal-matrix.hpp:252
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType
Definition: math/tridiagonal-matrix.hpp:57
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::m_rhs
const RhsMatrixType & m_rhs
Definition: math/tridiagonal-matrix.hpp:372
pinocchio::TridiagonalSymmetricMatrixTpl::subDiagonal
CoeffVectorType & subDiagonal()
Definition: math/tridiagonal-matrix.hpp:209
pinocchio::TridiagonalSymmetricMatrixTpl::inverse
TridiagonalSymmetricMatrixInverse< Self > inverse() const
Definition: math/tridiagonal-matrix.hpp:196
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType
Definition: math/tridiagonal-matrix.hpp:38
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType< TridiagonalSymmetricMatrixInverse, MatrixDerived > >::Base
pinocchio::traits< pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType< TridiagonalSymmetricMatrixInverse, MatrixDerived > > Base
Definition: math/tridiagonal-matrix.hpp:144
pinocchio::TridiagonalSymmetricMatrixInverse::m_sub_diagonal
CoeffVectorType m_sub_diagonal
Definition: math/tridiagonal-matrix.hpp:530
pinocchio::TridiagonalSymmetricMatrixInverse::eval
void eval()
Forward sweep of https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm.
Definition: math/tridiagonal-matrix.hpp:513
pinocchio::TridiagonalSymmetricMatrixInverse::Options
@ Options
Definition: math/tridiagonal-matrix.hpp:433
pinocchio::TridiagonalSymmetricMatrixInverse::Self
TridiagonalSymmetricMatrixInverse Self
Definition: math/tridiagonal-matrix.hpp:429
pinocchio::TridiagonalSymmetricMatrixTpl::operator==
bool operator==(const TridiagonalSymmetricMatrixTpl &other) const
Definition: math/tridiagonal-matrix.hpp:184
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::TridiagonalSymmetricMatrixApplyOnTheRightReturnType
TridiagonalSymmetricMatrixApplyOnTheRightReturnType(const TridiagonalSymmetricMatrix &lhs, const RhsMatrixType &rhs)
Definition: math/tridiagonal-matrix.hpp:334
pinocchio::TridiagonalSymmetricMatrixTpl::matrix
PlainMatrixType matrix() const
Definition: math/tridiagonal-matrix.hpp:272
pinocchio::Options
Options
Definition: joint-configuration.hpp:1082
pinocchio::TridiagonalSymmetricMatrixTpl::rows
EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:263
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::cols
EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:414
c
Vec3f c
fwd.hpp
inverse-kinematics.i
int i
Definition: inverse-kinematics.py:17
pinocchio::TridiagonalSymmetricMatrixTpl::diagonal
const CoeffVectorType & diagonal() const
Definition: math/tridiagonal-matrix.hpp:205
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::evalTo
void evalTo(ResultType &result) const
Definition: math/tridiagonal-matrix.hpp:391
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType< TridiagonalSymmetricMatrix, MatrixDerived > >::Base
pinocchio::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType< TridiagonalSymmetricMatrix, MatrixDerived > > Base
Definition: math/tridiagonal-matrix.hpp:97
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::Self
TridiagonalSymmetricMatrixApplyOnTheRightReturnType Self
Definition: math/tridiagonal-matrix.hpp:331
pinocchio::TridiagonalSymmetricMatrixTpl::m_sub_diagonal
CoeffVectorType m_sub_diagonal
Definition: math/tridiagonal-matrix.hpp:312
pinocchio::TridiagonalSymmetricMatrixInverse::Scalar
TridiagonalSymmetricMatrix::Scalar Scalar
Definition: math/tridiagonal-matrix.hpp:430
pinocchio::python::Scalar
context::Scalar Scalar
Definition: admm-solver.cpp:29
pinocchio::TridiagonalSymmetricMatrixInverse::applyOnTheRight
TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType< Self, MatrixDerived > applyOnTheRight(const Eigen::MatrixBase< MatrixDerived > &mat) const
Definition: math/tridiagonal-matrix.hpp:456
pinocchio::TridiagonalSymmetricMatrixTpl::PlainMatrixType
traits< Self >::PlainMatrixType PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:173
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::PlainMatrixType
traits< Self >::PlainMatrixType PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:540
pinocchio::operator*
TridiagonalSymmetricMatrixApplyOnTheLeftReturnType< LhsMatrixType, TridiagonalSymmetricMatrixTpl< S, O > > operator*(const Eigen::MatrixBase< LhsMatrixType > &lhs, const TridiagonalSymmetricMatrixTpl< S, O > &rhs)
Definition: math/tridiagonal-matrix.hpp:319
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType
TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType(const TridiagonalSymmetricMatrixInverse &lhs, const RhsMatrixType &rhs)
Definition: math/tridiagonal-matrix.hpp:542
b
Vec3f b
pinocchio::TridiagonalSymmetricMatrixTpl::applyOnTheRight
TridiagonalSymmetricMatrixApplyOnTheRightReturnType< Self, MatrixDerived > applyOnTheRight(const Eigen::MatrixBase< MatrixDerived > &mat) const
Definition: math/tridiagonal-matrix.hpp:288
pinocchio::TridiagonalSymmetricMatrixTpl::operator!=
bool operator!=(const TridiagonalSymmetricMatrixTpl &other) const
Definition: math/tridiagonal-matrix.hpp:191
pinocchio::Index
PINOCCHIO_COMPILER_DIAGNOSTIC_POP typedef std::size_t Index
Definition: multibody/fwd.hpp:22
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::Self
TridiagonalSymmetricMatrixApplyOnTheLeftReturnType Self
Definition: math/tridiagonal-matrix.hpp:380
pinocchio::python::Options
@ Options
Definition: expose-contact-inverse-dynamics.cpp:22
pinocchio::TridiagonalSymmetricMatrixInverse::m_diagonal
CoeffVectorType m_diagonal
Definition: math/tridiagonal-matrix.hpp:529
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::m_rhs
const RhsMatrixType & m_rhs
Definition: math/tridiagonal-matrix.hpp:590
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::PlainMatrixType
traits< Self >::PlainMatrixType PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:381
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::m_rhs
const TridiagonalSymmetricMatrix & m_rhs
Definition: math/tridiagonal-matrix.hpp:421
pinocchio::TridiagonalSymmetricMatrixTpl
Dynamic size Tridiagonal symmetric matrix type This class is in practice used in Lanczos decompositio...
Definition: math/tridiagonal-matrix.hpp:14
pinocchio::TridiagonalSymmetricMatrixTpl::CoeffVectorType
Eigen::Matrix< Scalar, Eigen::Dynamic, 1, Options > CoeffVectorType
Definition: math/tridiagonal-matrix.hpp:172
pinocchio::TridiagonalSymmetricMatrixTpl::setRandom
void setRandom()
Definition: math/tridiagonal-matrix.hpp:240
pinocchio::traits< TridiagonalSymmetricMatrixTpl< _Scalar, _Options > >::PlainMatrixType
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic, Options > PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:24
pinocchio::TridiagonalSymmetricMatrixTpl::setZero
void setZero()
Definition: math/tridiagonal-matrix.hpp:229
pinocchio::TridiagonalSymmetricMatrixTpl::Self
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef TridiagonalSymmetricMatrixTpl Self
Definition: math/tridiagonal-matrix.hpp:165
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType< MatrixDerived, TridiagonalSymmetricMatrix > >::ReturnType
Base::PlainMatrixType ReturnType
Definition: math/tridiagonal-matrix.hpp:118
pinocchio::TridiagonalSymmetricMatrixTpl::Options
@ Options
Definition: math/tridiagonal-matrix.hpp:169
pinocchio::TridiagonalSymmetricMatrixTpl::TridiagonalSymmetricMatrixTpl
TridiagonalSymmetricMatrixTpl(const Eigen::DenseIndex size)
Default constructor from a given size.
Definition: math/tridiagonal-matrix.hpp:176
pinocchio::TridiagonalSymmetricMatrixInverse
Definition: math/tridiagonal-matrix.hpp:48
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::m_lhs
const LhsMatrixType & m_lhs
Definition: math/tridiagonal-matrix.hpp:420
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::rows
EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:410
traits
mat
mat
pinocchio::TridiagonalSymmetricMatrixTpl::diagonal
CoeffVectorType & diagonal()
Definition: math/tridiagonal-matrix.hpp:201
pinocchio::TridiagonalSymmetricMatrixTpl::operator*
TridiagonalSymmetricMatrixApplyOnTheRightReturnType< Self, MatrixDerived > operator*(const Eigen::MatrixBase< MatrixDerived > &mat) const
Definition: math/tridiagonal-matrix.hpp:304
size
FCL_REAL size() const
pinocchio::TridiagonalSymmetricMatrixInverse::evalTo
void evalTo(ResultType &result) const
Definition: math/tridiagonal-matrix.hpp:471
pinocchio::TridiagonalSymmetricMatrixInverse::CoeffVectorType
TridiagonalSymmetricMatrix::CoeffVectorType CoeffVectorType
Definition: math/tridiagonal-matrix.hpp:436
pinocchio::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType::TridiagonalSymmetricMatrixApplyOnTheLeftReturnType
TridiagonalSymmetricMatrixApplyOnTheLeftReturnType(const LhsMatrixType &lhs, const TridiagonalSymmetricMatrix &rhs)
Definition: math/tridiagonal-matrix.hpp:383
pinocchio::TridiagonalSymmetricMatrixTpl::isDiagonal
bool isDiagonal(const Scalar prec=Eigen::NumTraits< Scalar >::dummy_precision()) const
Definition: math/tridiagonal-matrix.hpp:246
pinocchio::TridiagonalSymmetricMatrixInverse::TridiagonalSymmetricMatrix
_TridiagonalSymmetricMatrix TridiagonalSymmetricMatrix
Definition: math/tridiagonal-matrix.hpp:428
pinocchio::TridiagonalSymmetricMatrixInverse::tridiagonal_matrix
const TridiagonalSymmetricMatrix & tridiagonal_matrix
Definition: math/tridiagonal-matrix.hpp:527
pinocchio::TridiagonalSymmetricMatrixInverse::cols
EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:503
pinocchio::TridiagonalSymmetricMatrixTpl::m_diagonal
CoeffVectorType m_diagonal
Definition: math/tridiagonal-matrix.hpp:311
ur5x4.w
w
Definition: ur5x4.py:50
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixTpl< Scalar, Options > >::Base
pinocchio::traits< pinocchio::TridiagonalSymmetricMatrixTpl< Scalar, Options > > Base
Definition: math/tridiagonal-matrix.hpp:77
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::evalTo
void evalTo(ResultType &result) const
Definition: math/tridiagonal-matrix.hpp:550
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType
Definition: math/tridiagonal-matrix.hpp:28
pinocchio::TridiagonalSymmetricMatrixTpl::setIdentity
void setIdentity()
Definition: math/tridiagonal-matrix.hpp:218
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::rows
EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:361
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::cols
EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:365
pinocchio::TridiagonalSymmetricMatrixTpl::isIdentity
bool isIdentity(const Scalar prec=Eigen::NumTraits< Scalar >::dummy_precision()) const
Definition: math/tridiagonal-matrix.hpp:224
pinocchio::traits< TridiagonalSymmetricMatrixTpl< _Scalar, _Options > >::Scalar
_Scalar Scalar
Definition: math/tridiagonal-matrix.hpp:19
pinocchio::TridiagonalSymmetricMatrixInverse::rows
EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:499
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::m_lhs
const TridiagonalSymmetricMatrixInverse & m_lhs
Definition: math/tridiagonal-matrix.hpp:589
pinocchio::TridiagonalSymmetricMatrixTpl::isZero
bool isZero(const Scalar prec=Eigen::NumTraits< Scalar >::dummy_precision()) const
Definition: math/tridiagonal-matrix.hpp:235
pinocchio::TridiagonalSymmetricMatrixInverse::inverse
const TridiagonalSymmetricMatrix & inverse() const
Definition: math/tridiagonal-matrix.hpp:449
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::m_lhs
const TridiagonalSymmetricMatrix & m_lhs
Definition: math/tridiagonal-matrix.hpp:371
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType< TridiagonalSymmetricMatrix, MatrixDerived > >::ReturnType
Base::PlainMatrixType ReturnType
Definition: math/tridiagonal-matrix.hpp:98
pinocchio::TridiagonalSymmetricMatrixInverse::m_size
Eigen::DenseIndex m_size
Definition: math/tridiagonal-matrix.hpp:528
Eigen::internal::traits< pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType< TridiagonalSymmetricMatrixInverse, MatrixDerived > >::ReturnType
Base::PlainMatrixType ReturnType
Definition: math/tridiagonal-matrix.hpp:145
pinocchio::traits
Common traits structure to fully define base classes for CRTP.
Definition: fwd.hpp:71
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::cols
EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:583
pinocchio::TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType::rows
EIGEN_CONSTEXPR Eigen::Index rows() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:579
pinocchio::TridiagonalSymmetricMatrixInverse::TridiagonalSymmetricMatrixInverse
TridiagonalSymmetricMatrixInverse(const TridiagonalSymmetricMatrix &tridiagonal_matrix)
Definition: math/tridiagonal-matrix.hpp:439
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::evalTo
void evalTo(ResultType &result) const
Definition: math/tridiagonal-matrix.hpp:342
pinocchio::TridiagonalSymmetricMatrixTpl::subDiagonal
const CoeffVectorType & subDiagonal() const
Definition: math/tridiagonal-matrix.hpp:213
pinocchio::TridiagonalSymmetricMatrixTpl::evalTo
void evalTo(ResultType &result) const
Definition: math/tridiagonal-matrix.hpp:278
pinocchio::TridiagonalSymmetricMatrixTpl::applyOnTheLeft
TridiagonalSymmetricMatrixApplyOnTheLeftReturnType< MatrixDerived, Self > applyOnTheLeft(const Eigen::MatrixBase< MatrixDerived > &mat) const
Definition: math/tridiagonal-matrix.hpp:296
pinocchio::TridiagonalSymmetricMatrixInverse::operator*
TridiagonalSymmetricMatrixInverseApplyOnTheRightReturnType< Self, MatrixDerived > operator*(const Eigen::MatrixBase< MatrixDerived > &mat) const
Definition: math/tridiagonal-matrix.hpp:465
pinocchio::TridiagonalSymmetricMatrixApplyOnTheRightReturnType::PlainMatrixType
traits< Self >::PlainMatrixType PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:332
pinocchio::TridiagonalSymmetricMatrixTpl::Scalar
_Scalar Scalar
Definition: math/tridiagonal-matrix.hpp:166
simulation-closed-kinematic-chains.rhs
rhs
Definition: simulation-closed-kinematic-chains.py:138
pinocchio::TridiagonalSymmetricMatrixTpl::cols
EIGEN_CONSTEXPR Eigen::Index cols() const EIGEN_NOEXCEPT
Definition: math/tridiagonal-matrix.hpp:267
pinocchio
Main pinocchio namespace.
Definition: timings.cpp:27
pinocchio::TridiagonalSymmetricMatrixInverse::PlainMatrixType
traits< Self >::PlainMatrixType PlainMatrixType
Definition: math/tridiagonal-matrix.hpp:437


pinocchio
Author(s):
autogenerated on Tue Jan 7 2025 03:41:48