kIOS.cpp
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #include <hpp/fcl/BV/kIOS.h>
40 #include <hpp/fcl/math/transform.h>
41 
42 #include <iostream>
43 #include <limits>
44 
45 namespace hpp {
46 namespace fcl {
47 
48 bool kIOS::overlap(const kIOS& other) const {
49  for (unsigned int i = 0; i < num_spheres; ++i) {
50  for (unsigned int j = 0; j < other.num_spheres; ++j) {
51  FCL_REAL o_dist = (spheres[i].o - other.spheres[j].o).squaredNorm();
52  FCL_REAL sum_r = spheres[i].r + other.spheres[j].r;
53  if (o_dist > sum_r * sum_r) return false;
54  }
55  }
56 
57  return obb.overlap(other.obb);
58 }
59 
60 bool kIOS::overlap(const kIOS& other, const CollisionRequest& request,
61  FCL_REAL& sqrDistLowerBound) const {
62  for (unsigned int i = 0; i < num_spheres; ++i) {
63  for (unsigned int j = 0; j < other.num_spheres; ++j) {
64  FCL_REAL o_dist = (spheres[i].o - other.spheres[j].o).squaredNorm();
65  FCL_REAL sum_r = spheres[i].r + other.spheres[j].r;
66  if (o_dist > sum_r * sum_r) {
67  o_dist = sqrt(o_dist) - sum_r;
68  sqrDistLowerBound = o_dist * o_dist;
69  return false;
70  }
71  }
72  }
73 
74  return obb.overlap(other.obb, request, sqrDistLowerBound);
75 }
76 
77 bool kIOS::contain(const Vec3f& p) const {
78  for (unsigned int i = 0; i < num_spheres; ++i) {
79  FCL_REAL r = spheres[i].r;
80  if ((spheres[i].o - p).squaredNorm() > r * r) return false;
81  }
82 
83  return true;
84 }
85 
87  for (unsigned int i = 0; i < num_spheres; ++i) {
88  FCL_REAL r = spheres[i].r;
89  FCL_REAL new_r_sqr = (p - spheres[i].o).squaredNorm();
90  if (new_r_sqr > r * r) {
91  spheres[i].r = sqrt(new_r_sqr);
92  }
93  }
94 
95  obb += p;
96  return *this;
97 }
98 
99 kIOS kIOS::operator+(const kIOS& other) const {
100  kIOS result;
101  unsigned int new_num_spheres = std::min(num_spheres, other.num_spheres);
102  for (unsigned int i = 0; i < new_num_spheres; ++i) {
103  result.spheres[i] = encloseSphere(spheres[i], other.spheres[i]);
104  }
105 
106  result.num_spheres = new_num_spheres;
107 
108  result.obb = obb + other.obb;
109 
110  return result;
111 }
112 
113 FCL_REAL kIOS::width() const { return obb.width(); }
114 
115 FCL_REAL kIOS::height() const { return obb.height(); }
116 
117 FCL_REAL kIOS::depth() const { return obb.depth(); }
118 
119 FCL_REAL kIOS::volume() const { return obb.volume(); }
120 
121 FCL_REAL kIOS::size() const { return volume(); }
122 
123 FCL_REAL kIOS::distance(const kIOS& other, Vec3f* P, Vec3f* Q) const {
124  FCL_REAL d_max = 0;
125  long id_a = -1, id_b = -1;
126  for (unsigned int i = 0; i < num_spheres; ++i) {
127  for (unsigned int j = 0; j < other.num_spheres; ++j) {
128  FCL_REAL d = (spheres[i].o - other.spheres[j].o).norm() -
129  (spheres[i].r + other.spheres[j].r);
130  if (d_max < d) {
131  d_max = d;
132  if (P && Q) {
133  id_a = (long)i;
134  id_b = (long)j;
135  }
136  }
137  }
138  }
139 
140  if (P && Q) {
141  if (id_a != -1 && id_b != -1) {
142  const Vec3f v = spheres[id_a].o - spheres[id_b].o;
143  FCL_REAL len_v = v.norm();
144  *P = spheres[id_a].o - v * (spheres[id_a].r / len_v);
145  *Q = spheres[id_b].o + v * (spheres[id_b].r / len_v);
146  }
147  }
148 
149  return d_max;
150 }
151 
152 bool overlap(const Matrix3f& R0, const Vec3f& T0, const kIOS& b1,
153  const kIOS& b2) {
154  kIOS b2_temp = b2;
155  for (unsigned int i = 0; i < b2_temp.num_spheres; ++i) {
156  b2_temp.spheres[i].o.noalias() =
157  R0.transpose() * (b2_temp.spheres[i].o - T0);
158  }
159 
160  b2_temp.obb.To.noalias() = R0.transpose() * (b2_temp.obb.To - T0);
161  b2_temp.obb.axes.applyOnTheLeft(R0.transpose());
162 
163  return b1.overlap(b2_temp);
164 }
165 
166 bool overlap(const Matrix3f& R0, const Vec3f& T0, const kIOS& b1,
167  const kIOS& b2, const CollisionRequest& request,
168  FCL_REAL& sqrDistLowerBound) {
169  kIOS b2_temp = b2;
170  for (unsigned int i = 0; i < b2_temp.num_spheres; ++i) {
171  b2_temp.spheres[i].o.noalias() =
172  R0.transpose() * (b2_temp.spheres[i].o - T0);
173  }
174 
175  b2_temp.obb.To.noalias() = R0.transpose() * (b2_temp.obb.To - T0);
176  b2_temp.obb.axes.applyOnTheLeft(R0.transpose());
177 
178  return b1.overlap(b2_temp, request, sqrDistLowerBound);
179 }
180 
181 FCL_REAL distance(const Matrix3f& R0, const Vec3f& T0, const kIOS& b1,
182  const kIOS& b2, Vec3f* P, Vec3f* Q) {
183  kIOS b2_temp = b2;
184  for (unsigned int i = 0; i < b2_temp.num_spheres; ++i) {
185  b2_temp.spheres[i].o = R0 * b2_temp.spheres[i].o + T0;
186  }
187 
188  return b1.distance(b2_temp, P, Q);
189 }
190 
191 kIOS translate(const kIOS& bv, const Vec3f& t) {
192  kIOS res(bv);
193  for (size_t i = 0; i < res.num_spheres; ++i) {
194  res.spheres[i].o += t;
195  }
196 
197  translate(res.obb, t);
198  return res;
199 }
200 
201 } // namespace fcl
202 
203 } // namespace hpp
hpp::fcl::OBB::axes
Matrix3f axes
Orientation of OBB. axis[i] is the ith column of the orientation matrix for the box; it is also the i...
Definition: include/hpp/fcl/BV/OBB.h:58
hpp::fcl::kIOS::contain
bool contain(const Vec3f &p) const
Check whether the kIOS contains a point.
Definition: kIOS.cpp:77
hpp::fcl::kIOS::depth
FCL_REAL depth() const
Depth of the kIOS.
Definition: kIOS.cpp:117
hpp::fcl::Vec3f
Eigen::Matrix< FCL_REAL, 3, 1 > Vec3f
Definition: data_types.h:66
hpp::fcl::kIOS::encloseSphere
static kIOS_Sphere encloseSphere(const kIOS_Sphere &s0, const kIOS_Sphere &s1)
generate one sphere enclosing two spheres
Definition: kIOS.h:69
hpp::fcl::kIOS::kIOS_Sphere::o
Vec3f o
Definition: kIOS.h:56
hpp::fcl::kIOS::size
FCL_REAL size() const
size of the kIOS (used in BV_Splitter to order two kIOSs)
Definition: kIOS.cpp:121
obb
Definition: obb.py:1
hpp::fcl::kIOS::volume
FCL_REAL volume() const
Volume of the kIOS.
Definition: kIOS.cpp:119
hpp::fcl::kIOS
A class describing the kIOS collision structure, which is a set of spheres.
Definition: kIOS.h:53
hpp::fcl::distance
HPP_FCL_DLLAPI FCL_REAL distance(const Matrix3f &R0, const Vec3f &T0, const kIOS &b1, const kIOS &b2, Vec3f *P=NULL, Vec3f *Q=NULL)
Approximate distance between two kIOS bounding volumes.
Definition: kIOS.cpp:181
octree.r
r
Definition: octree.py:9
hpp::fcl::kIOS::kIOS_Sphere::r
FCL_REAL r
Definition: kIOS.h:57
res
res
hpp::fcl::FCL_REAL
double FCL_REAL
Definition: data_types.h:65
hpp::fcl::kIOS::height
FCL_REAL height() const
Height of the kIOS.
Definition: kIOS.cpp:115
hpp::fcl::kIOS::obb
OBB obb
@ OBB related with kIOS
Definition: kIOS.h:117
P
P
hpp
Main namespace.
Definition: broadphase_bruteforce.h:44
hpp::fcl::CollisionRequest
request to the collision algorithm
Definition: collision_data.h:235
hpp::fcl::kIOS::overlap
bool overlap(const kIOS &other) const
Check collision between two kIOS.
Definition: kIOS.cpp:48
t
tuple t
hpp::fcl::OBB::To
Vec3f To
Center of OBB.
Definition: include/hpp/fcl/BV/OBB.h:61
hpp::fcl::kIOS::num_spheres
unsigned int num_spheres
The number of spheres, no larger than 5.
Definition: kIOS.h:114
hpp::fcl::Matrix3f
Eigen::Matrix< FCL_REAL, 3, 3 > Matrix3f
Definition: data_types.h:68
hpp::fcl::kIOS::operator+=
kIOS & operator+=(const Vec3f &p)
A simple way to merge the kIOS and a point.
Definition: kIOS.cpp:86
hpp::fcl::kIOS::operator+
kIOS operator+(const kIOS &other) const
Return the merged kIOS of current kIOS and the other one.
Definition: kIOS.cpp:99
hpp::fcl::overlap
HPP_FCL_DLLAPI bool overlap(const Matrix3f &R0, const Vec3f &T0, const AABB &b1, const AABB &b2)
Check collision between two aabbs, b1 is in configuration (R0, T0) and b2 is in identity.
Definition: AABB.cpp:134
transform.h
hpp::fcl::kIOS::distance
FCL_REAL distance(const kIOS &other, Vec3f *P=NULL, Vec3f *Q=NULL) const
The distance between two kIOS.
Definition: kIOS.cpp:123
BVH_utility.h
kIOS.h
hpp::fcl::kIOS::width
FCL_REAL width() const
Width of the kIOS.
Definition: kIOS.cpp:113
hpp::fcl::translate
static AABB translate(const AABB &aabb, const Vec3f &t)
translate the center of AABB by t
Definition: BV/AABB.h:226
obb.v
list v
Definition: obb.py:48
hpp::fcl::kIOS::spheres
kIOS_Sphere spheres[5]
The (at most) five spheres for intersection.
Definition: kIOS.h:111


hpp-fcl
Author(s):
autogenerated on Fri Aug 2 2024 02:45:14