#include <kmeans_index.h>

Classes | |
| struct | Node |
| struct | PointInfo |
Public Types | |
| typedef NNIndex< Distance > | BaseClass |
| typedef Distance::ResultType | DistanceType |
| typedef Distance::ElementType | ElementType |
| typedef bool | needs_vector_space_distance |
Public Types inherited from rtflann::NNIndex< Distance > | |
| typedef Distance::ResultType | DistanceType |
| typedef Distance::ElementType | ElementType |
Public Member Functions | |
| void | addPoints (const Matrix< ElementType > &points, float rebuild_threshold=2) |
| Incrementally add points to the index. More... | |
| BaseClass * | clone () const |
| void | findNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const |
| int | getClusterCenters (Matrix< DistanceType > ¢ers) |
| flann_algorithm_t | getType () const |
| void | initCenterChooser () |
| KMeansIndex (const Matrix< ElementType > &inputData, const IndexParams ¶ms=KMeansIndexParams(), Distance d=Distance()) | |
| KMeansIndex (const IndexParams ¶ms=KMeansIndexParams(), Distance d=Distance()) | |
| KMeansIndex (const KMeansIndex &other) | |
| void | loadIndex (FILE *stream) |
| KMeansIndex & | operator= (KMeansIndex other) |
| void | saveIndex (FILE *stream) |
| template<typename Archive > | |
| void | serialize (Archive &ar) |
| void | set_cb_index (float index) |
| int | usedMemory () const |
| virtual | ~KMeansIndex () |
Public Member Functions inherited from rtflann::NNIndex< Distance > | |
| virtual void | buildIndex () |
| virtual void | buildIndex (const Matrix< ElementType > &dataset) |
| IndexParams | getParameters () const |
| virtual ElementType * | getPoint (size_t id) |
| virtual int | knnSearch (const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, size_t knn, const SearchParams ¶ms) const |
| Perform k-nearest neighbor search. More... | |
| virtual int | knnSearch (const Matrix< ElementType > &queries, std::vector< std::vector< size_t > > &indices, std::vector< std::vector< DistanceType > > &dists, size_t knn, const SearchParams ¶ms) const |
| Perform k-nearest neighbor search. More... | |
| int | knnSearch (const Matrix< ElementType > &queries, std::vector< std::vector< int > > &indices, std::vector< std::vector< DistanceType > > &dists, size_t knn, const SearchParams ¶ms) const |
| NNIndex (Distance d) | |
| NNIndex (const IndexParams ¶ms, Distance d) | |
| NNIndex (const NNIndex &other) | |
| virtual int | radiusSearch (const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams ¶ms) const |
| Perform radius search. More... | |
| int | radiusSearch (const Matrix< ElementType > &queries, Matrix< int > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams ¶ms) const |
| virtual int | radiusSearch (const Matrix< ElementType > &queries, std::vector< std::vector< size_t > > &indices, std::vector< std::vector< DistanceType > > &dists, float radius, const SearchParams ¶ms) const |
| Perform radius search. More... | |
| int | radiusSearch (const Matrix< ElementType > &queries, std::vector< std::vector< int > > &indices, std::vector< std::vector< DistanceType > > &dists, float radius, const SearchParams ¶ms) const |
| size_t | removedCount () const |
| virtual void | removePoint (size_t id) |
| template<typename Archive > | |
| void | serialize (Archive &ar) |
| size_t | size () const |
| size_t | sizeAtBuild () const |
| size_t | veclen () const |
| virtual | ~NNIndex () |
Public Member Functions inherited from rtflann::IndexBase | |
| virtual | ~IndexBase () |
Protected Member Functions | |
| void | buildIndexImpl () |
Protected Member Functions inherited from rtflann::NNIndex< Distance > | |
| void | cleanRemovedPoints () |
| void | extendDataset (const Matrix< ElementType > &new_points) |
| size_t | id_to_index (size_t id) |
| void | indices_to_ids (const size_t *in, size_t *out, size_t size) const |
| void | setDataset (const Matrix< ElementType > &dataset) |
| void | swap (NNIndex &other) |
Private Types | |
| typedef BranchStruct< NodePtr, DistanceType > | BranchSt |
| typedef Node * | NodePtr |
Private Member Functions | |
| void | addPointToTree (NodePtr node, size_t index, DistanceType dist_to_pivot) |
| void | computeClustering (NodePtr node, int *indices, int indices_length, int branching) |
| void | computeNodeStatistics (NodePtr node, const std::vector< int > &indices) |
| void | copyTree (NodePtr &dst, const NodePtr &src) |
| int | exploreNodeBranches (NodePtr node, const ElementType *q, Heap< BranchSt > *heap) const |
| template<bool with_removed> | |
| void | findExactNN (NodePtr node, ResultSet< DistanceType > &result, const ElementType *vec) const |
| template<bool with_removed> | |
| void | findNeighborsWithRemoved (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const |
| template<bool with_removed> | |
| void | findNN (NodePtr node, ResultSet< DistanceType > &result, const ElementType *vec, int &checks, int maxChecks, Heap< BranchSt > *heap) const |
| void | freeIndex () |
| void | getCenterOrdering (NodePtr node, const ElementType *q, std::vector< int > &sort_indices) const |
| DistanceType | getDistanceToBorder (DistanceType *p, DistanceType *c, DistanceType *q) const |
| int | getMinVarianceClusters (NodePtr root, std::vector< NodePtr > &clusters, int clusters_length, DistanceType &varianceValue) const |
| void | swap (KMeansIndex &other) |
Private Attributes | |
| int | branching_ |
| float | cb_index_ |
| flann_centers_init_t | centers_init_ |
| CenterChooser< Distance > * | chooseCenters_ |
| int | iterations_ |
| int | memoryCounter_ |
| PooledAllocator | pool_ |
| NodePtr | root_ |
Additional Inherited Members | |
Protected Attributes inherited from rtflann::NNIndex< Distance > | |
| ElementType * | data_ptr_ |
| Distance | distance_ |
| std::vector< size_t > | ids_ |
| IndexParams | index_params_ |
| size_t | last_id_ |
| std::vector< ElementType * > | points_ |
| bool | removed_ |
| size_t | removed_count_ |
| DynamicBitset | removed_points_ |
| size_t | size_ |
| size_t | size_at_build_ |
| size_t | veclen_ |
Hierarchical kmeans index
Contains a tree constructed through a hierarchical kmeans clustering and other information for indexing a set of points for nearest-neighbour matching.
Definition at line 83 of file kmeans_index.h.
| typedef NNIndex<Distance> rtflann::KMeansIndex< Distance >::BaseClass |
Definition at line 89 of file kmeans_index.h.
|
private |
Alias definition for a nicer syntax.
Definition at line 454 of file kmeans_index.h.
| typedef Distance::ResultType rtflann::KMeansIndex< Distance >::DistanceType |
Definition at line 87 of file kmeans_index.h.
| typedef Distance::ElementType rtflann::KMeansIndex< Distance >::ElementType |
Definition at line 86 of file kmeans_index.h.
| typedef bool rtflann::KMeansIndex< Distance >::needs_vector_space_distance |
Definition at line 91 of file kmeans_index.h.
|
private |
Definition at line 449 of file kmeans_index.h.
|
inline |
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
Definition at line 107 of file kmeans_index.h.
|
inline |
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
Definition at line 131 of file kmeans_index.h.
|
inline |
Definition at line 146 of file kmeans_index.h.
|
inlinevirtual |
Index destructor.
Release the memory used by the index.
Definition at line 187 of file kmeans_index.h.
|
inlinevirtual |
Incrementally add points to the index.
| points | Matrix with points to be added |
| rebuild_threshold |
Reimplemented from rtflann::NNIndex< Distance >.
Definition at line 215 of file kmeans_index.h.
|
inlineprivate |
Definition at line 969 of file kmeans_index.h.
|
inlineprotectedvirtual |
Builds the index
Implements rtflann::NNIndex< Distance >.
Definition at line 329 of file kmeans_index.h.
|
inlinevirtual |
Implements rtflann::NNIndex< Distance >.
Definition at line 193 of file kmeans_index.h.
|
inlineprivate |
The method responsible with actually doing the recursive hierarchical clustering
Params: node = the node to cluster indices = indices of the points belonging to the current node branching = the branching factor to use in the clustering
TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
Definition at line 542 of file kmeans_index.h.
|
inlineprivate |
Computes the statistics of a node (mean, radius, variance).
Params: node = the node to use indices = the indices of the points belonging to the node
Definition at line 495 of file kmeans_index.h.
|
inlineprivate |
Definition at line 467 of file kmeans_index.h.
|
inlineprivate |
Helper function that computes the nearest childs of a node to a given query point. Params: node = the node q = the query point distances = array with the distances to each child node. Returns:
Definition at line 802 of file kmeans_index.h.
|
inlineprivate |
Function the performs exact nearest neighbor search by traversing the entire tree.
Definition at line 835 of file kmeans_index.h.
|
inlinevirtual |
Find set of nearest neighbors to vec. Their indices are stored inside the result object.
Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors searchParams = parameters that influence the search algorithm (checks, cb_index)
Implements rtflann::NNIndex< Distance >.
Definition at line 283 of file kmeans_index.h.
|
inlineprivate |
Definition at line 715 of file kmeans_index.h.
|
inlineprivate |
Performs one descent in the hierarchical k-means tree. The branches not visited are stored in a priority queue.
Params: node = node to explore result = container for the k-nearest neighbors found vec = query points checks = how many points in the dataset have been checked so far maxChecks = maximum dataset points to checks
Definition at line 755 of file kmeans_index.h.
|
inlineprivatevirtual |
Helper function
Implements rtflann::NNIndex< Distance >.
Definition at line 460 of file kmeans_index.h.
|
inlineprivate |
Helper function.
I computes the order in which to traverse the child nodes of a particular node.
Definition at line 880 of file kmeans_index.h.
|
inline |
Clustering function that takes a cut in the hierarchical k-means tree and return the clusters centers of that clustering. Params: numClusters = number of clusters to have in the clustering computed Returns: number of cluster centers
Definition at line 301 of file kmeans_index.h.
|
inlineprivate |
Method that computes the squared distance from the query point q from inside region with center c to the border between this region and the region with center p
Definition at line 902 of file kmeans_index.h.
|
inlineprivate |
Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize the overall variance of the clustering. Params: root = root node clusters = array with clusters centers (return value) varianceValue = variance of the clustering (return value) Returns:
Definition at line 926 of file kmeans_index.h.
|
inlinevirtual |
Implements rtflann::IndexBase.
Definition at line 95 of file kmeans_index.h.
|
inline |
Definition at line 165 of file kmeans_index.h.
|
inlinevirtual |
Implements rtflann::IndexBase.
Definition at line 266 of file kmeans_index.h.
|
inline |
Definition at line 158 of file kmeans_index.h.
|
inlinevirtual |
Implements rtflann::IndexBase.
Definition at line 260 of file kmeans_index.h.
|
inline |
Definition at line 234 of file kmeans_index.h.
|
inline |
Definition at line 199 of file kmeans_index.h.
|
inlineprivate |
Definition at line 1010 of file kmeans_index.h.
|
inlinevirtual |
Computes the inde memory usage Returns: memory used by the index
Implements rtflann::IndexBase.
Definition at line 208 of file kmeans_index.h.
|
private |
The branching factor used in the hierarchical k-means clustering
Definition at line 1025 of file kmeans_index.h.
|
private |
Cluster border index. This is used in the tree search phase when determining the closest cluster to explore next. A zero value takes into account only the cluster centres, a value greater then zero also take into account the size of the cluster.
Definition at line 1039 of file kmeans_index.h.
|
private |
Algorithm for choosing the cluster centers
Definition at line 1031 of file kmeans_index.h.
|
private |
Algorithm used to choose initial centers
Definition at line 1059 of file kmeans_index.h.
|
private |
Maximum number of iterations to use when performing k-means clustering
Definition at line 1028 of file kmeans_index.h.
|
private |
Memory occupied by the index.
Definition at line 1054 of file kmeans_index.h.
|
private |
Pooled memory allocator.
Definition at line 1049 of file kmeans_index.h.
|
private |
The root node in the tree.
Definition at line 1044 of file kmeans_index.h.