ctbmv.c
Go to the documentation of this file.
1 /* ctbmv.f -- translated by f2c (version 20100827).
2  You must link the resulting object file with libf2c:
3  on Microsoft Windows system, link with libf2c.lib;
4  on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5  or, if you install libf2c.a in a standard place, with -lf2c -lm
6  -- in that order, at the end of the command line, as in
7  cc *.o -lf2c -lm
8  Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10  http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "datatypes.h"
14 
15 /* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
17  ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
18 {
19  /* System generated locals */
20  integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
21  complex q__1, q__2, q__3;
22 
23  /* Builtin functions */
24  void r_cnjg(complex *, complex *);
25 
26  /* Local variables */
27  integer i__, j, l, ix, jx, kx, info;
28  complex temp;
29  extern logical lsame_(char *, char *, ftnlen, ftnlen);
30  integer kplus1;
31  extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
32  logical noconj, nounit;
33 
34 /* .. Scalar Arguments .. */
35 /* .. */
36 /* .. Array Arguments .. */
37 /* .. */
38 
39 /* Purpose */
40 /* ======= */
41 
42 /* CTBMV performs one of the matrix-vector operations */
43 
44 /* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
45 
46 /* where x is an n element vector and A is an n by n unit, or non-unit, */
47 /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
48 
49 /* Arguments */
50 /* ========== */
51 
52 /* UPLO - CHARACTER*1. */
53 /* On entry, UPLO specifies whether the matrix is an upper or */
54 /* lower triangular matrix as follows: */
55 
56 /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
57 
58 /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
59 
60 /* Unchanged on exit. */
61 
62 /* TRANS - CHARACTER*1. */
63 /* On entry, TRANS specifies the operation to be performed as */
64 /* follows: */
65 
66 /* TRANS = 'N' or 'n' x := A*x. */
67 
68 /* TRANS = 'T' or 't' x := A'*x. */
69 
70 /* TRANS = 'C' or 'c' x := conjg( A' )*x. */
71 
72 /* Unchanged on exit. */
73 
74 /* DIAG - CHARACTER*1. */
75 /* On entry, DIAG specifies whether or not A is unit */
76 /* triangular as follows: */
77 
78 /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
79 
80 /* DIAG = 'N' or 'n' A is not assumed to be unit */
81 /* triangular. */
82 
83 /* Unchanged on exit. */
84 
85 /* N - INTEGER. */
86 /* On entry, N specifies the order of the matrix A. */
87 /* N must be at least zero. */
88 /* Unchanged on exit. */
89 
90 /* K - INTEGER. */
91 /* On entry with UPLO = 'U' or 'u', K specifies the number of */
92 /* super-diagonals of the matrix A. */
93 /* On entry with UPLO = 'L' or 'l', K specifies the number of */
94 /* sub-diagonals of the matrix A. */
95 /* K must satisfy 0 .le. K. */
96 /* Unchanged on exit. */
97 
98 /* A - COMPLEX array of DIMENSION ( LDA, n ). */
99 /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
100 /* by n part of the array A must contain the upper triangular */
101 /* band part of the matrix of coefficients, supplied column by */
102 /* column, with the leading diagonal of the matrix in row */
103 /* ( k + 1 ) of the array, the first super-diagonal starting at */
104 /* position 2 in row k, and so on. The top left k by k triangle */
105 /* of the array A is not referenced. */
106 /* The following program segment will transfer an upper */
107 /* triangular band matrix from conventional full matrix storage */
108 /* to band storage: */
109 
110 /* DO 20, J = 1, N */
111 /* M = K + 1 - J */
112 /* DO 10, I = MAX( 1, J - K ), J */
113 /* A( M + I, J ) = matrix( I, J ) */
114 /* 10 CONTINUE */
115 /* 20 CONTINUE */
116 
117 /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
118 /* by n part of the array A must contain the lower triangular */
119 /* band part of the matrix of coefficients, supplied column by */
120 /* column, with the leading diagonal of the matrix in row 1 of */
121 /* the array, the first sub-diagonal starting at position 1 in */
122 /* row 2, and so on. The bottom right k by k triangle of the */
123 /* array A is not referenced. */
124 /* The following program segment will transfer a lower */
125 /* triangular band matrix from conventional full matrix storage */
126 /* to band storage: */
127 
128 /* DO 20, J = 1, N */
129 /* M = 1 - J */
130 /* DO 10, I = J, MIN( N, J + K ) */
131 /* A( M + I, J ) = matrix( I, J ) */
132 /* 10 CONTINUE */
133 /* 20 CONTINUE */
134 
135 /* Note that when DIAG = 'U' or 'u' the elements of the array A */
136 /* corresponding to the diagonal elements of the matrix are not */
137 /* referenced, but are assumed to be unity. */
138 /* Unchanged on exit. */
139 
140 /* LDA - INTEGER. */
141 /* On entry, LDA specifies the first dimension of A as declared */
142 /* in the calling (sub) program. LDA must be at least */
143 /* ( k + 1 ). */
144 /* Unchanged on exit. */
145 
146 /* X - COMPLEX array of dimension at least */
147 /* ( 1 + ( n - 1 )*abs( INCX ) ). */
148 /* Before entry, the incremented array X must contain the n */
149 /* element vector x. On exit, X is overwritten with the */
150 /* tranformed vector x. */
151 
152 /* INCX - INTEGER. */
153 /* On entry, INCX specifies the increment for the elements of */
154 /* X. INCX must not be zero. */
155 /* Unchanged on exit. */
156 
157 /* Further Details */
158 /* =============== */
159 
160 /* Level 2 Blas routine. */
161 
162 /* -- Written on 22-October-1986. */
163 /* Jack Dongarra, Argonne National Lab. */
164 /* Jeremy Du Croz, Nag Central Office. */
165 /* Sven Hammarling, Nag Central Office. */
166 /* Richard Hanson, Sandia National Labs. */
167 
168 /* ===================================================================== */
169 
170 /* .. Parameters .. */
171 /* .. */
172 /* .. Local Scalars .. */
173 /* .. */
174 /* .. External Functions .. */
175 /* .. */
176 /* .. External Subroutines .. */
177 /* .. */
178 /* .. Intrinsic Functions .. */
179 /* .. */
180 
181 /* Test the input parameters. */
182 
183  /* Parameter adjustments */
184  a_dim1 = *lda;
185  a_offset = 1 + a_dim1;
186  a -= a_offset;
187  --x;
188 
189  /* Function Body */
190  info = 0;
191  if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
192  ftnlen)1, (ftnlen)1)) {
193  info = 1;
194  } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
195  "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
196  ftnlen)1)) {
197  info = 2;
198  } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
199  "N", (ftnlen)1, (ftnlen)1)) {
200  info = 3;
201  } else if (*n < 0) {
202  info = 4;
203  } else if (*k < 0) {
204  info = 5;
205  } else if (*lda < *k + 1) {
206  info = 7;
207  } else if (*incx == 0) {
208  info = 9;
209  }
210  if (info != 0) {
211  xerbla_("CTBMV ", &info, (ftnlen)6);
212  return 0;
213  }
214 
215 /* Quick return if possible. */
216 
217  if (*n == 0) {
218  return 0;
219  }
220 
221  noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
222  nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
223 
224 /* Set up the start point in X if the increment is not unity. This */
225 /* will be ( N - 1 )*INCX too small for descending loops. */
226 
227  if (*incx <= 0) {
228  kx = 1 - (*n - 1) * *incx;
229  } else if (*incx != 1) {
230  kx = 1;
231  }
232 
233 /* Start the operations. In this version the elements of A are */
234 /* accessed sequentially with one pass through A. */
235 
236  if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
237 
238 /* Form x := A*x. */
239 
240  if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
241  kplus1 = *k + 1;
242  if (*incx == 1) {
243  i__1 = *n;
244  for (j = 1; j <= i__1; ++j) {
245  i__2 = j;
246  if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
247  i__2 = j;
248  temp.r = x[i__2].r, temp.i = x[i__2].i;
249  l = kplus1 - j;
250 /* Computing MAX */
251  i__2 = 1, i__3 = j - *k;
252  i__4 = j - 1;
253  for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
254  i__2 = i__;
255  i__3 = i__;
256  i__5 = l + i__ + j * a_dim1;
257  q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
258  q__2.i = temp.r * a[i__5].i + temp.i * a[
259  i__5].r;
260  q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
261  q__2.i;
262  x[i__2].r = q__1.r, x[i__2].i = q__1.i;
263 /* L10: */
264  }
265  if (nounit) {
266  i__4 = j;
267  i__2 = j;
268  i__3 = kplus1 + j * a_dim1;
269  q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
270  i__3].i, q__1.i = x[i__2].r * a[i__3].i +
271  x[i__2].i * a[i__3].r;
272  x[i__4].r = q__1.r, x[i__4].i = q__1.i;
273  }
274  }
275 /* L20: */
276  }
277  } else {
278  jx = kx;
279  i__1 = *n;
280  for (j = 1; j <= i__1; ++j) {
281  i__4 = jx;
282  if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
283  i__4 = jx;
284  temp.r = x[i__4].r, temp.i = x[i__4].i;
285  ix = kx;
286  l = kplus1 - j;
287 /* Computing MAX */
288  i__4 = 1, i__2 = j - *k;
289  i__3 = j - 1;
290  for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
291  i__4 = ix;
292  i__2 = ix;
293  i__5 = l + i__ + j * a_dim1;
294  q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
295  q__2.i = temp.r * a[i__5].i + temp.i * a[
296  i__5].r;
297  q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
298  q__2.i;
299  x[i__4].r = q__1.r, x[i__4].i = q__1.i;
300  ix += *incx;
301 /* L30: */
302  }
303  if (nounit) {
304  i__3 = jx;
305  i__4 = jx;
306  i__2 = kplus1 + j * a_dim1;
307  q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
308  i__2].i, q__1.i = x[i__4].r * a[i__2].i +
309  x[i__4].i * a[i__2].r;
310  x[i__3].r = q__1.r, x[i__3].i = q__1.i;
311  }
312  }
313  jx += *incx;
314  if (j > *k) {
315  kx += *incx;
316  }
317 /* L40: */
318  }
319  }
320  } else {
321  if (*incx == 1) {
322  for (j = *n; j >= 1; --j) {
323  i__1 = j;
324  if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
325  i__1 = j;
326  temp.r = x[i__1].r, temp.i = x[i__1].i;
327  l = 1 - j;
328 /* Computing MIN */
329  i__1 = *n, i__3 = j + *k;
330  i__4 = j + 1;
331  for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
332  i__1 = i__;
333  i__3 = i__;
334  i__2 = l + i__ + j * a_dim1;
335  q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
336  q__2.i = temp.r * a[i__2].i + temp.i * a[
337  i__2].r;
338  q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
339  q__2.i;
340  x[i__1].r = q__1.r, x[i__1].i = q__1.i;
341 /* L50: */
342  }
343  if (nounit) {
344  i__4 = j;
345  i__1 = j;
346  i__3 = j * a_dim1 + 1;
347  q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
348  i__3].i, q__1.i = x[i__1].r * a[i__3].i +
349  x[i__1].i * a[i__3].r;
350  x[i__4].r = q__1.r, x[i__4].i = q__1.i;
351  }
352  }
353 /* L60: */
354  }
355  } else {
356  kx += (*n - 1) * *incx;
357  jx = kx;
358  for (j = *n; j >= 1; --j) {
359  i__4 = jx;
360  if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
361  i__4 = jx;
362  temp.r = x[i__4].r, temp.i = x[i__4].i;
363  ix = kx;
364  l = 1 - j;
365 /* Computing MIN */
366  i__4 = *n, i__1 = j + *k;
367  i__3 = j + 1;
368  for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
369  i__4 = ix;
370  i__1 = ix;
371  i__2 = l + i__ + j * a_dim1;
372  q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
373  q__2.i = temp.r * a[i__2].i + temp.i * a[
374  i__2].r;
375  q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
376  q__2.i;
377  x[i__4].r = q__1.r, x[i__4].i = q__1.i;
378  ix -= *incx;
379 /* L70: */
380  }
381  if (nounit) {
382  i__3 = jx;
383  i__4 = jx;
384  i__1 = j * a_dim1 + 1;
385  q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
386  i__1].i, q__1.i = x[i__4].r * a[i__1].i +
387  x[i__4].i * a[i__1].r;
388  x[i__3].r = q__1.r, x[i__3].i = q__1.i;
389  }
390  }
391  jx -= *incx;
392  if (*n - j >= *k) {
393  kx -= *incx;
394  }
395 /* L80: */
396  }
397  }
398  }
399  } else {
400 
401 /* Form x := A'*x or x := conjg( A' )*x. */
402 
403  if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
404  kplus1 = *k + 1;
405  if (*incx == 1) {
406  for (j = *n; j >= 1; --j) {
407  i__3 = j;
408  temp.r = x[i__3].r, temp.i = x[i__3].i;
409  l = kplus1 - j;
410  if (noconj) {
411  if (nounit) {
412  i__3 = kplus1 + j * a_dim1;
413  q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
414  q__1.i = temp.r * a[i__3].i + temp.i * a[
415  i__3].r;
416  temp.r = q__1.r, temp.i = q__1.i;
417  }
418 /* Computing MAX */
419  i__4 = 1, i__1 = j - *k;
420  i__3 = max(i__4,i__1);
421  for (i__ = j - 1; i__ >= i__3; --i__) {
422  i__4 = l + i__ + j * a_dim1;
423  i__1 = i__;
424  q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
425  i__1].i, q__2.i = a[i__4].r * x[i__1].i +
426  a[i__4].i * x[i__1].r;
427  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
428  q__2.i;
429  temp.r = q__1.r, temp.i = q__1.i;
430 /* L90: */
431  }
432  } else {
433  if (nounit) {
434  r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
435  q__1.r = temp.r * q__2.r - temp.i * q__2.i,
436  q__1.i = temp.r * q__2.i + temp.i *
437  q__2.r;
438  temp.r = q__1.r, temp.i = q__1.i;
439  }
440 /* Computing MAX */
441  i__4 = 1, i__1 = j - *k;
442  i__3 = max(i__4,i__1);
443  for (i__ = j - 1; i__ >= i__3; --i__) {
444  r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
445  i__4 = i__;
446  q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
447  q__2.i = q__3.r * x[i__4].i + q__3.i * x[
448  i__4].r;
449  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
450  q__2.i;
451  temp.r = q__1.r, temp.i = q__1.i;
452 /* L100: */
453  }
454  }
455  i__3 = j;
456  x[i__3].r = temp.r, x[i__3].i = temp.i;
457 /* L110: */
458  }
459  } else {
460  kx += (*n - 1) * *incx;
461  jx = kx;
462  for (j = *n; j >= 1; --j) {
463  i__3 = jx;
464  temp.r = x[i__3].r, temp.i = x[i__3].i;
465  kx -= *incx;
466  ix = kx;
467  l = kplus1 - j;
468  if (noconj) {
469  if (nounit) {
470  i__3 = kplus1 + j * a_dim1;
471  q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
472  q__1.i = temp.r * a[i__3].i + temp.i * a[
473  i__3].r;
474  temp.r = q__1.r, temp.i = q__1.i;
475  }
476 /* Computing MAX */
477  i__4 = 1, i__1 = j - *k;
478  i__3 = max(i__4,i__1);
479  for (i__ = j - 1; i__ >= i__3; --i__) {
480  i__4 = l + i__ + j * a_dim1;
481  i__1 = ix;
482  q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
483  i__1].i, q__2.i = a[i__4].r * x[i__1].i +
484  a[i__4].i * x[i__1].r;
485  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
486  q__2.i;
487  temp.r = q__1.r, temp.i = q__1.i;
488  ix -= *incx;
489 /* L120: */
490  }
491  } else {
492  if (nounit) {
493  r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
494  q__1.r = temp.r * q__2.r - temp.i * q__2.i,
495  q__1.i = temp.r * q__2.i + temp.i *
496  q__2.r;
497  temp.r = q__1.r, temp.i = q__1.i;
498  }
499 /* Computing MAX */
500  i__4 = 1, i__1 = j - *k;
501  i__3 = max(i__4,i__1);
502  for (i__ = j - 1; i__ >= i__3; --i__) {
503  r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
504  i__4 = ix;
505  q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
506  q__2.i = q__3.r * x[i__4].i + q__3.i * x[
507  i__4].r;
508  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
509  q__2.i;
510  temp.r = q__1.r, temp.i = q__1.i;
511  ix -= *incx;
512 /* L130: */
513  }
514  }
515  i__3 = jx;
516  x[i__3].r = temp.r, x[i__3].i = temp.i;
517  jx -= *incx;
518 /* L140: */
519  }
520  }
521  } else {
522  if (*incx == 1) {
523  i__3 = *n;
524  for (j = 1; j <= i__3; ++j) {
525  i__4 = j;
526  temp.r = x[i__4].r, temp.i = x[i__4].i;
527  l = 1 - j;
528  if (noconj) {
529  if (nounit) {
530  i__4 = j * a_dim1 + 1;
531  q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
532  q__1.i = temp.r * a[i__4].i + temp.i * a[
533  i__4].r;
534  temp.r = q__1.r, temp.i = q__1.i;
535  }
536 /* Computing MIN */
537  i__1 = *n, i__2 = j + *k;
538  i__4 = min(i__1,i__2);
539  for (i__ = j + 1; i__ <= i__4; ++i__) {
540  i__1 = l + i__ + j * a_dim1;
541  i__2 = i__;
542  q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
543  i__2].i, q__2.i = a[i__1].r * x[i__2].i +
544  a[i__1].i * x[i__2].r;
545  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
546  q__2.i;
547  temp.r = q__1.r, temp.i = q__1.i;
548 /* L150: */
549  }
550  } else {
551  if (nounit) {
552  r_cnjg(&q__2, &a[j * a_dim1 + 1]);
553  q__1.r = temp.r * q__2.r - temp.i * q__2.i,
554  q__1.i = temp.r * q__2.i + temp.i *
555  q__2.r;
556  temp.r = q__1.r, temp.i = q__1.i;
557  }
558 /* Computing MIN */
559  i__1 = *n, i__2 = j + *k;
560  i__4 = min(i__1,i__2);
561  for (i__ = j + 1; i__ <= i__4; ++i__) {
562  r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
563  i__1 = i__;
564  q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
565  q__2.i = q__3.r * x[i__1].i + q__3.i * x[
566  i__1].r;
567  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
568  q__2.i;
569  temp.r = q__1.r, temp.i = q__1.i;
570 /* L160: */
571  }
572  }
573  i__4 = j;
574  x[i__4].r = temp.r, x[i__4].i = temp.i;
575 /* L170: */
576  }
577  } else {
578  jx = kx;
579  i__3 = *n;
580  for (j = 1; j <= i__3; ++j) {
581  i__4 = jx;
582  temp.r = x[i__4].r, temp.i = x[i__4].i;
583  kx += *incx;
584  ix = kx;
585  l = 1 - j;
586  if (noconj) {
587  if (nounit) {
588  i__4 = j * a_dim1 + 1;
589  q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
590  q__1.i = temp.r * a[i__4].i + temp.i * a[
591  i__4].r;
592  temp.r = q__1.r, temp.i = q__1.i;
593  }
594 /* Computing MIN */
595  i__1 = *n, i__2 = j + *k;
596  i__4 = min(i__1,i__2);
597  for (i__ = j + 1; i__ <= i__4; ++i__) {
598  i__1 = l + i__ + j * a_dim1;
599  i__2 = ix;
600  q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
601  i__2].i, q__2.i = a[i__1].r * x[i__2].i +
602  a[i__1].i * x[i__2].r;
603  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
604  q__2.i;
605  temp.r = q__1.r, temp.i = q__1.i;
606  ix += *incx;
607 /* L180: */
608  }
609  } else {
610  if (nounit) {
611  r_cnjg(&q__2, &a[j * a_dim1 + 1]);
612  q__1.r = temp.r * q__2.r - temp.i * q__2.i,
613  q__1.i = temp.r * q__2.i + temp.i *
614  q__2.r;
615  temp.r = q__1.r, temp.i = q__1.i;
616  }
617 /* Computing MIN */
618  i__1 = *n, i__2 = j + *k;
619  i__4 = min(i__1,i__2);
620  for (i__ = j + 1; i__ <= i__4; ++i__) {
621  r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
622  i__1 = ix;
623  q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
624  q__2.i = q__3.r * x[i__1].i + q__3.i * x[
625  i__1].r;
626  q__1.r = temp.r + q__2.r, q__1.i = temp.i +
627  q__2.i;
628  temp.r = q__1.r, temp.i = q__1.i;
629  ix += *incx;
630 /* L190: */
631  }
632  }
633  i__4 = jx;
634  x[i__4].r = temp.r, x[i__4].i = temp.i;
635  jx += *incx;
636 /* L200: */
637  }
638  }
639  }
640  }
641 
642  return 0;
643 
644 /* End of CTBMV . */
645 
646 } /* ctbmv_ */
647 
#define max(a, b)
Definition: datatypes.h:20
int ctbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, complex *a, integer *lda, complex *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
Definition: ctbmv.c:15
real i
Definition: datatypes.h:12
void r_cnjg(complex *r, complex *z)
Definition: r_cnjg.c:3
Matrix diag(const std::vector< Matrix > &Hs)
Definition: Matrix.cpp:206
#define min(a, b)
Definition: datatypes.h:19
RealScalar RealScalar int * incx
int n
static char trans
int ftnlen
Definition: datatypes.h:14
Array33i a
else if n * info
static const Line3 l(Rot3(), 1, 1)
EIGEN_WEAK_LINKING int xerbla_(const char *msg, int *info, int)
Definition: xerbla.cpp:15
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
* lda
Definition: eigenvalues.cpp:59
int logical
Definition: datatypes.h:15
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
Definition: lsame.c:15
int integer
Definition: datatypes.h:8
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
std::ptrdiff_t j
real r
Definition: datatypes.h:12


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:41:54