#include <NoiseModel.h>

Public Types | |
| typedef boost::shared_ptr< Diagonal > | shared_ptr |
Public Types inherited from gtsam::noiseModel::Gaussian | |
| typedef boost::shared_ptr< Gaussian > | shared_ptr |
Public Types inherited from gtsam::noiseModel::Base | |
| typedef boost::shared_ptr< Base > | shared_ptr |
Public Member Functions | |
| double | invsigma (size_t i) const |
| const Vector & | invsigmas () const |
| double | precision (size_t i) const |
| const Vector & | precisions () const |
| void | print (const std::string &name) const override |
| Matrix | R () const override |
| double | sigma (size_t i) const |
| Vector | sigmas () const override |
| Calculate standard deviations. More... | |
| Vector | unwhiten (const Vector &v) const override |
| Unwhiten an error vector. More... | |
| Vector | whiten (const Vector &v) const override |
| Whiten an error vector. More... | |
| Matrix | Whiten (const Matrix &H) const override |
| void | WhitenInPlace (Matrix &H) const override |
| void | WhitenInPlace (Eigen::Block< Matrix > H) const override |
| ~Diagonal () override | |
Public Member Functions inherited from gtsam::noiseModel::Gaussian | |
| virtual Matrix | covariance () const |
| Compute covariance matrix. More... | |
| bool | equals (const Base &expected, double tol=1e-9) const override |
| virtual Matrix | information () const |
| Compute information matrix. More... | |
| virtual boost::shared_ptr< Diagonal > | QR (Matrix &Ab) const |
| void | WhitenSystem (std::vector< Matrix > &A, Vector &b) const override |
| void | WhitenSystem (Matrix &A, Vector &b) const override |
| void | WhitenSystem (Matrix &A1, Matrix &A2, Vector &b) const override |
| void | WhitenSystem (Matrix &A1, Matrix &A2, Matrix &A3, Vector &b) const override |
| ~Gaussian () override | |
Public Member Functions inherited from gtsam::noiseModel::Base | |
| Base (size_t dim=1) | |
| primary constructor More... | |
| size_t | dim () const |
| Dimensionality. More... | |
| virtual bool | isConstrained () const |
| true if a constrained noise model, saves slow/clumsy dynamic casting More... | |
| virtual bool | isUnit () const |
| true if a unit noise model, saves slow/clumsy dynamic casting More... | |
| virtual double | loss (const double squared_distance) const |
| loss function, input is Mahalanobis distance More... | |
| virtual double | mahalanobisDistance (const Vector &v) const |
| Mahalanobis distance. More... | |
| virtual double | squaredMahalanobisDistance (const Vector &v) const |
| Squared Mahalanobis distance v'*R'*R*v = <R*v,R*v> More... | |
| virtual Vector | unweightedWhiten (const Vector &v) const |
| virtual void | unwhitenInPlace (Vector &v) const |
| virtual void | unwhitenInPlace (Eigen::Block< Vector > &v) const |
| virtual double | weight (const Vector &v) const |
| virtual void | whitenInPlace (Vector &v) const |
| virtual void | whitenInPlace (Eigen::Block< Vector > &v) const |
| virtual | ~Base () |
Static Public Member Functions | |
| static shared_ptr | Precisions (const Vector &precisions, bool smart=true) |
| static shared_ptr | Sigmas (const Vector &sigmas, bool smart=true) |
| static shared_ptr | Variances (const Vector &variances, bool smart=true) |
Static Public Member Functions inherited from gtsam::noiseModel::Gaussian | |
| static shared_ptr | Covariance (const Matrix &covariance, bool smart=true) |
| static shared_ptr | Information (const Matrix &M, bool smart=true) |
| static shared_ptr | SqrtInformation (const Matrix &R, bool smart=true) |
Protected Member Functions | |
| Diagonal () | |
| Diagonal (const Vector &sigmas) | |
Protected Member Functions inherited from gtsam::noiseModel::Gaussian | |
| Gaussian (size_t dim=1, const boost::optional< Matrix > &sqrt_information=boost::none) | |
Protected Attributes | |
| Vector | invsigmas_ |
| Vector | precisions_ |
| Vector | sigmas_ |
Protected Attributes inherited from gtsam::noiseModel::Gaussian | |
| boost::optional< Matrix > | sqrt_information_ |
Protected Attributes inherited from gtsam::noiseModel::Base | |
| size_t | dim_ |
Private Member Functions | |
| template<class ARCHIVE > | |
| void | serialize (ARCHIVE &ar, const unsigned int) |
Friends | |
| class | boost::serialization::access |
A diagonal noise model implements a diagonal covariance matrix, with the elements of the diagonal specified in a Vector. This class has no public constructors, instead, use the static constructor functions Sigmas etc...
Definition at line 282 of file NoiseModel.h.
| typedef boost::shared_ptr<Diagonal> gtsam::noiseModel::Diagonal::shared_ptr |
Definition at line 301 of file NoiseModel.h.
|
protected |
protected constructor - no initializations
Definition at line 244 of file NoiseModel.cpp.
|
protected |
constructor to allow for disabling initialization of invsigmas
Definition at line 250 of file NoiseModel.cpp.
|
inlineoverride |
Definition at line 303 of file NoiseModel.h.
|
inline |
Definition at line 344 of file NoiseModel.h.
|
inline |
Return sqrt precisions
Definition at line 343 of file NoiseModel.h.
|
inline |
Definition at line 350 of file NoiseModel.h.
|
inlinestatic |
A diagonal noise model created by specifying a Vector of precisions, i.e. i.e. the diagonal of the information matrix, i.e., weights
Definition at line 323 of file NoiseModel.h.
|
inline |
Return precisions
Definition at line 349 of file NoiseModel.h.
|
overridevirtual |
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, gtsam::noiseModel::Isotropic, and gtsam::noiseModel::Constrained.
Definition at line 287 of file NoiseModel.cpp.
|
inlineoverridevirtual |
Return R itself, but note that Whiten(H) is cheaper than R*H
Reimplemented from gtsam::noiseModel::Gaussian.
Definition at line 355 of file NoiseModel.h.
|
inlineprivate |
Definition at line 363 of file NoiseModel.h.
|
inline |
Return standard deviations (sqrt of diagonal)
Definition at line 338 of file NoiseModel.h.
|
static |
A diagonal noise model created by specifying a Vector of sigmas, i.e. standard deviations, the diagonal of the square root covariance matrix.
Definition at line 270 of file NoiseModel.cpp.
|
inlineoverridevirtual |
Calculate standard deviations.
Reimplemented from gtsam::noiseModel::Gaussian.
Definition at line 328 of file NoiseModel.h.
Unwhiten an error vector.
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, and gtsam::noiseModel::Isotropic.
Definition at line 297 of file NoiseModel.cpp.
|
static |
A diagonal noise model created by specifying a Vector of variances, i.e. i.e. the diagonal of the covariance matrix.
| variances | A vector containing the variances of this noise model |
| smart | check if can be simplified to derived class |
Definition at line 258 of file NoiseModel.cpp.
Whiten an error vector.
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, gtsam::noiseModel::Isotropic, and gtsam::noiseModel::Constrained.
Definition at line 292 of file NoiseModel.cpp.
Multiply a derivative with R (derivative of whiten) Equivalent to whitening each column of the input matrix.
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, gtsam::noiseModel::Isotropic, and gtsam::noiseModel::Constrained.
Definition at line 302 of file NoiseModel.cpp.
|
overridevirtual |
In-place version
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, gtsam::noiseModel::Isotropic, and gtsam::noiseModel::Constrained.
Definition at line 307 of file NoiseModel.cpp.
|
overridevirtual |
In-place version
Reimplemented from gtsam::noiseModel::Gaussian.
Reimplemented in gtsam::noiseModel::Unit, gtsam::noiseModel::Isotropic, and gtsam::noiseModel::Constrained.
Definition at line 312 of file NoiseModel.cpp.
|
friend |
Serialization function
Definition at line 361 of file NoiseModel.h.
|
protected |
Definition at line 290 of file NoiseModel.h.
|
protected |
Definition at line 290 of file NoiseModel.h.
|
protected |
Standard deviations (sigmas), their inverse and inverse square (weights/precisions) These are all computed at construction: the idea is to use one shared model where computation is done only once, the common use case in many problems.
Definition at line 290 of file NoiseModel.h.