SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
Go to the documentation of this file.
1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X + X.transpose();
3 cout << "Here is a random symmetric 5x5 matrix, A:" << endl << A << endl << endl;
4 
5 SelfAdjointEigenSolver<MatrixXd> es(A);
6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
8 
9 double lambda = es.eigenvalues()[0];
10 cout << "Consider the first eigenvalue, lambda = " << lambda << endl;
11 VectorXd v = es.eigenvectors().col(0);
12 cout << "If v is the corresponding eigenvector, then lambda * v = " << endl << lambda * v << endl;
13 cout << "... and A * v = " << endl << A * v << endl << endl;
14 
15 MatrixXd D = es.eigenvalues().asDiagonal();
16 MatrixXd V = es.eigenvectors();
17 cout << "Finally, V * D * V^(-1) = " << endl << V * D * V.inverse() << endl;
ArrayXcf v
Definition: Cwise_arg.cpp:1
cout<< "Here is a random symmetric 5x5 matrix, A:"<< endl<< A<< endl<< endl;SelfAdjointEigenSolver< MatrixXd > es(A)
cout<< "The eigenvalues of A are:"<< endl<< ces.eigenvalues()<< endl;cout<< "The matrix of eigenvectors, V, is:"<< endl<< ces.eigenvectors()<< endl<< endl;complex< float > lambda


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:43:55