Warning
You're reading the documentation for a version of ROS 2 that has reached its EOL (end-of-life), and is no longer officially supported.
If you want up-to-date information, please have a look at Jazzy.
Ubuntu (source)
System requirements
The current Debian-based target platforms for Galactic Geochelone are:
Tier 1: Ubuntu Linux - Focal Fossa (20.04) 64-bit
Tier 3: Debian Linux - Bullseye (11) 64-bit
Other Linux platforms with varying support levels include:
Arch Linux, see alternate instructions
Fedora Linux, see alternate instructions
OpenEmbedded / webOS OSE, see alternate instructions
As defined in REP 2000.
System setup
Set locale
Make sure you have a locale which supports UTF-8
.
If you are in a minimal environment (such as a docker container), the locale may be something minimal like POSIX
.
We test with the following settings. However, it should be fine if you’re using a different UTF-8 supported locale.
locale # check for UTF-8
sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8
locale # verify settings
Add the ROS 2 apt repository
You will need to add the ROS 2 apt repository to your system.
First ensure that the Ubuntu Universe repository is enabled.
sudo apt install software-properties-common
sudo add-apt-repository universe
Now add the ROS 2 GPG key with apt.
sudo apt update && sudo apt install curl
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg
Then add the repository to your sources list.
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null
Install development tools and ROS tools
sudo apt update && sudo apt install -y \
python3-pip \
python3-pytest-cov \
ros-dev-tools
# install some pip packages needed for testing
python3 -m pip install -U \
flake8-blind-except \
flake8-builtins \
flake8-class-newline \
flake8-comprehensions \
flake8-deprecated \
flake8-docstrings \
flake8-import-order \
flake8-quotes \
pytest-repeat \
pytest-rerunfailures \
pytest \
setuptools
Ubuntu 18.04 is not an officially supported platform, but may still work. You’ll need at least the following additional dependencies:
python3 -m pip install -U importlib-metadata importlib-resources
Get ROS 2 code
Create a workspace and clone all repos:
mkdir -p ~/ros2_galactic/src
cd ~/ros2_galactic
vcs import --input https://raw.githubusercontent.com/ros2/ros2/galactic/ros2.repos src
Install dependencies using rosdep
ROS 2 packages are built on frequently updated Ubuntu systems. It is always recommended that you ensure your system is up to date before installing new packages.
sudo apt upgrade
sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -y --skip-keys "fastcdr rti-connext-dds-5.3.1 urdfdom_headers"
Note: If you’re using a distribution that is based on Ubuntu (like Linux Mint) but does not identify itself as such, you’ll get an error message like Unsupported OS [mint]
. In this case append --os=ubuntu:focal
to the above command.
Install additional DDS implementations (optional)
If you would like to use another DDS or RTPS vendor besides the default, you can find instructions here.
Build the code in the workspace
If you have already installed ROS 2 another way (either via Debians or the binary distribution), make sure that you run the below commands in a fresh environment that does not have those other installations sourced.
Also ensure that you do not have source /opt/ros/${ROS_DISTRO}/setup.bash
in your .bashrc
.
You can make sure that ROS 2 is not sourced with the command printenv | grep -i ROS
.
The output should be empty.
More info on working with a ROS workspace can be found in this tutorial.
cd ~/ros2_galactic/
colcon build --symlink-install
Note: if you are having trouble compiling all examples and this is preventing you from completing a successful build, you can use COLCON_IGNORE
in the same manner as CATKIN_IGNORE to ignore the subtree or remove the folder from the workspace.
Take for instance: you would like to avoid installing the large OpenCV library.
Well then simply run touch COLCON_IGNORE
in the cam2image
demo directory to leave it out of the build process.
Environment setup
Source the setup script
Set up your environment by sourcing the following file.
# Replace ".bash" with your shell if you're not using bash
# Possible values are: setup.bash, setup.sh, setup.zsh
. ~/ros2_galactic/install/local_setup.bash
Try some examples
In one terminal, source the setup file and then run a C++ talker
:
. ~/ros2_galactic/install/local_setup.bash
ros2 run demo_nodes_cpp talker
In another terminal source the setup file and then run a Python listener
:
. ~/ros2_galactic/install/local_setup.bash
ros2 run demo_nodes_py listener
You should see the talker
saying that it’s Publishing
messages and the listener
saying I heard
those messages.
This verifies both the C++ and Python APIs are working properly.
Hooray!
Next steps after installing
Continue with the tutorials and demos to configure your environment, create your own workspace and packages, and learn ROS 2 core concepts.
Using the ROS 1 bridge
The ROS 1 bridge can connect topics from ROS 1 to ROS 2 and vice-versa. See the dedicated documentation on how to build and use the ROS 1 bridge.
Additional RMW implementations (optional)
The default middleware that ROS 2 uses is Cyclone DDS
, but the middleware (RMW) can be replaced at runtime.
See the guide on how to work with multiple RMWs.
Alternate compilers
Using a different compiler besides gcc to compile ROS 2 is easy. If you set the environment variables CC
and CXX
to executables for a working C and C++ compiler, respectively, and retrigger CMake configuration (by using --force-cmake-config
or by deleting the packages you want to be affected), CMake will reconfigure and use the different compiler.
Clang
To configure CMake to detect and use Clang:
sudo apt install clang
export CC=clang
export CXX=clang++
colcon build --cmake-force-configure
Stay up to date
See Maintain source checkout to periodically refresh your source installation.
Troubleshooting
Troubleshooting techniques can be found here.
Uninstall
If you installed your workspace with colcon as instructed above, “uninstalling” could be just a matter of opening a new terminal and not sourcing the workspace’s
setup
file. This way, your environment will behave as though there is no Galactic install on your system.If you’re also trying to free up space, you can delete the entire workspace directory with:
rm -rf ~/ros2_galactic