$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_grasp_adjust/msg/GraspAdjustResult.msg */ 00002 #ifndef PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTRESULT_H 00003 #define PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/Grasp.h" 00018 #include "object_manipulation_msgs/GraspPlanningErrorCode.h" 00019 00020 namespace pr2_grasp_adjust 00021 { 00022 template <class ContainerAllocator> 00023 struct GraspAdjustResult_ { 00024 typedef GraspAdjustResult_<ContainerAllocator> Type; 00025 00026 GraspAdjustResult_() 00027 : grasps() 00028 , result() 00029 { 00030 } 00031 00032 GraspAdjustResult_(const ContainerAllocator& _alloc) 00033 : grasps(_alloc) 00034 , result(_alloc) 00035 { 00036 } 00037 00038 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type; 00039 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps; 00040 00041 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _result_type; 00042 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> result; 00043 00044 00045 ROS_DEPRECATED uint32_t get_grasps_size() const { return (uint32_t)grasps.size(); } 00046 ROS_DEPRECATED void set_grasps_size(uint32_t size) { grasps.resize((size_t)size); } 00047 ROS_DEPRECATED void get_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps; } 00048 ROS_DEPRECATED void set_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps = vec; } 00049 private: 00050 static const char* __s_getDataType_() { return "pr2_grasp_adjust/GraspAdjustResult"; } 00051 public: 00052 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00053 00054 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00055 00056 private: 00057 static const char* __s_getMD5Sum_() { return "4b2c78da8eafa798492827fe57d55f30"; } 00058 public: 00059 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00060 00061 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00062 00063 private: 00064 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00065 #result definition\n\ 00066 \n\ 00067 object_manipulation_msgs/Grasp[] grasps\n\ 00068 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00069 \n\ 00070 \n\ 00071 ================================================================================\n\ 00072 MSG: object_manipulation_msgs/Grasp\n\ 00073 \n\ 00074 # The internal posture of the hand for the pre-grasp\n\ 00075 # only positions are used\n\ 00076 sensor_msgs/JointState pre_grasp_posture\n\ 00077 \n\ 00078 # The internal posture of the hand for the grasp\n\ 00079 # positions and efforts are used\n\ 00080 sensor_msgs/JointState grasp_posture\n\ 00081 \n\ 00082 # The position of the end-effector for the grasp relative to a reference frame \n\ 00083 # (that is always specified elsewhere, not in this message)\n\ 00084 geometry_msgs/Pose grasp_pose\n\ 00085 \n\ 00086 # The estimated probability of success for this grasp\n\ 00087 float64 success_probability\n\ 00088 \n\ 00089 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00090 bool cluster_rep\n\ 00091 \n\ 00092 # how far the pre-grasp should ideally be away from the grasp\n\ 00093 float32 desired_approach_distance\n\ 00094 \n\ 00095 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00096 # for the grasp not to be rejected\n\ 00097 float32 min_approach_distance\n\ 00098 \n\ 00099 # an optional list of obstacles that we have semantic information about\n\ 00100 # and that we expect might move in the course of executing this grasp\n\ 00101 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00102 # execution, grasp executors will not check for collisions against these objects\n\ 00103 GraspableObject[] moved_obstacles\n\ 00104 \n\ 00105 ================================================================================\n\ 00106 MSG: sensor_msgs/JointState\n\ 00107 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00108 #\n\ 00109 # The state of each joint (revolute or prismatic) is defined by:\n\ 00110 # * the position of the joint (rad or m),\n\ 00111 # * the velocity of the joint (rad/s or m/s) and \n\ 00112 # * the effort that is applied in the joint (Nm or N).\n\ 00113 #\n\ 00114 # Each joint is uniquely identified by its name\n\ 00115 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00116 # in one message have to be recorded at the same time.\n\ 00117 #\n\ 00118 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00119 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00120 # effort associated with them, you can leave the effort array empty. \n\ 00121 #\n\ 00122 # All arrays in this message should have the same size, or be empty.\n\ 00123 # This is the only way to uniquely associate the joint name with the correct\n\ 00124 # states.\n\ 00125 \n\ 00126 \n\ 00127 Header header\n\ 00128 \n\ 00129 string[] name\n\ 00130 float64[] position\n\ 00131 float64[] velocity\n\ 00132 float64[] effort\n\ 00133 \n\ 00134 ================================================================================\n\ 00135 MSG: std_msgs/Header\n\ 00136 # Standard metadata for higher-level stamped data types.\n\ 00137 # This is generally used to communicate timestamped data \n\ 00138 # in a particular coordinate frame.\n\ 00139 # \n\ 00140 # sequence ID: consecutively increasing ID \n\ 00141 uint32 seq\n\ 00142 #Two-integer timestamp that is expressed as:\n\ 00143 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00144 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00145 # time-handling sugar is provided by the client library\n\ 00146 time stamp\n\ 00147 #Frame this data is associated with\n\ 00148 # 0: no frame\n\ 00149 # 1: global frame\n\ 00150 string frame_id\n\ 00151 \n\ 00152 ================================================================================\n\ 00153 MSG: geometry_msgs/Pose\n\ 00154 # A representation of pose in free space, composed of postion and orientation. \n\ 00155 Point position\n\ 00156 Quaternion orientation\n\ 00157 \n\ 00158 ================================================================================\n\ 00159 MSG: geometry_msgs/Point\n\ 00160 # This contains the position of a point in free space\n\ 00161 float64 x\n\ 00162 float64 y\n\ 00163 float64 z\n\ 00164 \n\ 00165 ================================================================================\n\ 00166 MSG: geometry_msgs/Quaternion\n\ 00167 # This represents an orientation in free space in quaternion form.\n\ 00168 \n\ 00169 float64 x\n\ 00170 float64 y\n\ 00171 float64 z\n\ 00172 float64 w\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: object_manipulation_msgs/GraspableObject\n\ 00176 # an object that the object_manipulator can work on\n\ 00177 \n\ 00178 # a graspable object can be represented in multiple ways. This message\n\ 00179 # can contain all of them. Which one is actually used is up to the receiver\n\ 00180 # of this message. When adding new representations, one must be careful that\n\ 00181 # they have reasonable lightweight defaults indicating that that particular\n\ 00182 # representation is not available.\n\ 00183 \n\ 00184 # the tf frame to be used as a reference frame when combining information from\n\ 00185 # the different representations below\n\ 00186 string reference_frame_id\n\ 00187 \n\ 00188 # potential recognition results from a database of models\n\ 00189 # all poses are relative to the object reference pose\n\ 00190 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00191 \n\ 00192 # the point cloud itself\n\ 00193 sensor_msgs/PointCloud cluster\n\ 00194 \n\ 00195 # a region of a PointCloud2 of interest\n\ 00196 object_manipulation_msgs/SceneRegion region\n\ 00197 \n\ 00198 # the name that this object has in the collision environment\n\ 00199 string collision_name\n\ 00200 ================================================================================\n\ 00201 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00202 # Informs that a specific model from the Model Database has been \n\ 00203 # identified at a certain location\n\ 00204 \n\ 00205 # the database id of the model\n\ 00206 int32 model_id\n\ 00207 \n\ 00208 # the pose that it can be found in\n\ 00209 geometry_msgs/PoseStamped pose\n\ 00210 \n\ 00211 # a measure of the confidence level in this detection result\n\ 00212 float32 confidence\n\ 00213 \n\ 00214 # the name of the object detector that generated this detection result\n\ 00215 string detector_name\n\ 00216 \n\ 00217 ================================================================================\n\ 00218 MSG: geometry_msgs/PoseStamped\n\ 00219 # A Pose with reference coordinate frame and timestamp\n\ 00220 Header header\n\ 00221 Pose pose\n\ 00222 \n\ 00223 ================================================================================\n\ 00224 MSG: sensor_msgs/PointCloud\n\ 00225 # This message holds a collection of 3d points, plus optional additional\n\ 00226 # information about each point.\n\ 00227 \n\ 00228 # Time of sensor data acquisition, coordinate frame ID.\n\ 00229 Header header\n\ 00230 \n\ 00231 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00232 # in the frame given in the header.\n\ 00233 geometry_msgs/Point32[] points\n\ 00234 \n\ 00235 # Each channel should have the same number of elements as points array,\n\ 00236 # and the data in each channel should correspond 1:1 with each point.\n\ 00237 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00238 ChannelFloat32[] channels\n\ 00239 \n\ 00240 ================================================================================\n\ 00241 MSG: geometry_msgs/Point32\n\ 00242 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00243 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00244 # \n\ 00245 # This recommendation is to promote interoperability. \n\ 00246 #\n\ 00247 # This message is designed to take up less space when sending\n\ 00248 # lots of points at once, as in the case of a PointCloud. \n\ 00249 \n\ 00250 float32 x\n\ 00251 float32 y\n\ 00252 float32 z\n\ 00253 ================================================================================\n\ 00254 MSG: sensor_msgs/ChannelFloat32\n\ 00255 # This message is used by the PointCloud message to hold optional data\n\ 00256 # associated with each point in the cloud. The length of the values\n\ 00257 # array should be the same as the length of the points array in the\n\ 00258 # PointCloud, and each value should be associated with the corresponding\n\ 00259 # point.\n\ 00260 \n\ 00261 # Channel names in existing practice include:\n\ 00262 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00263 # This is opposite to usual conventions but remains for\n\ 00264 # historical reasons. The newer PointCloud2 message has no\n\ 00265 # such problem.\n\ 00266 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00267 # (R,G,B) values packed into the least significant 24 bits,\n\ 00268 # in order.\n\ 00269 # \"intensity\" - laser or pixel intensity.\n\ 00270 # \"distance\"\n\ 00271 \n\ 00272 # The channel name should give semantics of the channel (e.g.\n\ 00273 # \"intensity\" instead of \"value\").\n\ 00274 string name\n\ 00275 \n\ 00276 # The values array should be 1-1 with the elements of the associated\n\ 00277 # PointCloud.\n\ 00278 float32[] values\n\ 00279 \n\ 00280 ================================================================================\n\ 00281 MSG: object_manipulation_msgs/SceneRegion\n\ 00282 # Point cloud\n\ 00283 sensor_msgs/PointCloud2 cloud\n\ 00284 \n\ 00285 # Indices for the region of interest\n\ 00286 int32[] mask\n\ 00287 \n\ 00288 # One of the corresponding 2D images, if applicable\n\ 00289 sensor_msgs/Image image\n\ 00290 \n\ 00291 # The disparity image, if applicable\n\ 00292 sensor_msgs/Image disparity_image\n\ 00293 \n\ 00294 # Camera info for the camera that took the image\n\ 00295 sensor_msgs/CameraInfo cam_info\n\ 00296 \n\ 00297 # a 3D region of interest for grasp planning\n\ 00298 geometry_msgs/PoseStamped roi_box_pose\n\ 00299 geometry_msgs/Vector3 roi_box_dims\n\ 00300 \n\ 00301 ================================================================================\n\ 00302 MSG: sensor_msgs/PointCloud2\n\ 00303 # This message holds a collection of N-dimensional points, which may\n\ 00304 # contain additional information such as normals, intensity, etc. The\n\ 00305 # point data is stored as a binary blob, its layout described by the\n\ 00306 # contents of the \"fields\" array.\n\ 00307 \n\ 00308 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00309 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00310 # camera depth sensors such as stereo or time-of-flight.\n\ 00311 \n\ 00312 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00313 # points).\n\ 00314 Header header\n\ 00315 \n\ 00316 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00317 # 1 and width is the length of the point cloud.\n\ 00318 uint32 height\n\ 00319 uint32 width\n\ 00320 \n\ 00321 # Describes the channels and their layout in the binary data blob.\n\ 00322 PointField[] fields\n\ 00323 \n\ 00324 bool is_bigendian # Is this data bigendian?\n\ 00325 uint32 point_step # Length of a point in bytes\n\ 00326 uint32 row_step # Length of a row in bytes\n\ 00327 uint8[] data # Actual point data, size is (row_step*height)\n\ 00328 \n\ 00329 bool is_dense # True if there are no invalid points\n\ 00330 \n\ 00331 ================================================================================\n\ 00332 MSG: sensor_msgs/PointField\n\ 00333 # This message holds the description of one point entry in the\n\ 00334 # PointCloud2 message format.\n\ 00335 uint8 INT8 = 1\n\ 00336 uint8 UINT8 = 2\n\ 00337 uint8 INT16 = 3\n\ 00338 uint8 UINT16 = 4\n\ 00339 uint8 INT32 = 5\n\ 00340 uint8 UINT32 = 6\n\ 00341 uint8 FLOAT32 = 7\n\ 00342 uint8 FLOAT64 = 8\n\ 00343 \n\ 00344 string name # Name of field\n\ 00345 uint32 offset # Offset from start of point struct\n\ 00346 uint8 datatype # Datatype enumeration, see above\n\ 00347 uint32 count # How many elements in the field\n\ 00348 \n\ 00349 ================================================================================\n\ 00350 MSG: sensor_msgs/Image\n\ 00351 # This message contains an uncompressed image\n\ 00352 # (0, 0) is at top-left corner of image\n\ 00353 #\n\ 00354 \n\ 00355 Header header # Header timestamp should be acquisition time of image\n\ 00356 # Header frame_id should be optical frame of camera\n\ 00357 # origin of frame should be optical center of cameara\n\ 00358 # +x should point to the right in the image\n\ 00359 # +y should point down in the image\n\ 00360 # +z should point into to plane of the image\n\ 00361 # If the frame_id here and the frame_id of the CameraInfo\n\ 00362 # message associated with the image conflict\n\ 00363 # the behavior is undefined\n\ 00364 \n\ 00365 uint32 height # image height, that is, number of rows\n\ 00366 uint32 width # image width, that is, number of columns\n\ 00367 \n\ 00368 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00369 # If you want to standardize a new string format, join\n\ 00370 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00371 \n\ 00372 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00373 # taken from the list of strings in src/image_encodings.cpp\n\ 00374 \n\ 00375 uint8 is_bigendian # is this data bigendian?\n\ 00376 uint32 step # Full row length in bytes\n\ 00377 uint8[] data # actual matrix data, size is (step * rows)\n\ 00378 \n\ 00379 ================================================================================\n\ 00380 MSG: sensor_msgs/CameraInfo\n\ 00381 # This message defines meta information for a camera. It should be in a\n\ 00382 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00383 # image topics named:\n\ 00384 #\n\ 00385 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00386 # image - monochrome, distorted\n\ 00387 # image_color - color, distorted\n\ 00388 # image_rect - monochrome, rectified\n\ 00389 # image_rect_color - color, rectified\n\ 00390 #\n\ 00391 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00392 # for producing the four processed image topics from image_raw and\n\ 00393 # camera_info. The meaning of the camera parameters are described in\n\ 00394 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00395 #\n\ 00396 # The image_geometry package provides a user-friendly interface to\n\ 00397 # common operations using this meta information. If you want to, e.g.,\n\ 00398 # project a 3d point into image coordinates, we strongly recommend\n\ 00399 # using image_geometry.\n\ 00400 #\n\ 00401 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00402 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00403 # indicates an uncalibrated camera.\n\ 00404 \n\ 00405 #######################################################################\n\ 00406 # Image acquisition info #\n\ 00407 #######################################################################\n\ 00408 \n\ 00409 # Time of image acquisition, camera coordinate frame ID\n\ 00410 Header header # Header timestamp should be acquisition time of image\n\ 00411 # Header frame_id should be optical frame of camera\n\ 00412 # origin of frame should be optical center of camera\n\ 00413 # +x should point to the right in the image\n\ 00414 # +y should point down in the image\n\ 00415 # +z should point into the plane of the image\n\ 00416 \n\ 00417 \n\ 00418 #######################################################################\n\ 00419 # Calibration Parameters #\n\ 00420 #######################################################################\n\ 00421 # These are fixed during camera calibration. Their values will be the #\n\ 00422 # same in all messages until the camera is recalibrated. Note that #\n\ 00423 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00424 # #\n\ 00425 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00426 # to: #\n\ 00427 # 1. An undistorted image (requires D and K) #\n\ 00428 # 2. A rectified image (requires D, K, R) #\n\ 00429 # The projection matrix P projects 3D points into the rectified image.#\n\ 00430 #######################################################################\n\ 00431 \n\ 00432 # The image dimensions with which the camera was calibrated. Normally\n\ 00433 # this will be the full camera resolution in pixels.\n\ 00434 uint32 height\n\ 00435 uint32 width\n\ 00436 \n\ 00437 # The distortion model used. Supported models are listed in\n\ 00438 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00439 # simple model of radial and tangential distortion - is sufficent.\n\ 00440 string distortion_model\n\ 00441 \n\ 00442 # The distortion parameters, size depending on the distortion model.\n\ 00443 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00444 float64[] D\n\ 00445 \n\ 00446 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00447 # [fx 0 cx]\n\ 00448 # K = [ 0 fy cy]\n\ 00449 # [ 0 0 1]\n\ 00450 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00451 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00452 # (cx, cy).\n\ 00453 float64[9] K # 3x3 row-major matrix\n\ 00454 \n\ 00455 # Rectification matrix (stereo cameras only)\n\ 00456 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00457 # stereo image plane so that epipolar lines in both stereo images are\n\ 00458 # parallel.\n\ 00459 float64[9] R # 3x3 row-major matrix\n\ 00460 \n\ 00461 # Projection/camera matrix\n\ 00462 # [fx' 0 cx' Tx]\n\ 00463 # P = [ 0 fy' cy' Ty]\n\ 00464 # [ 0 0 1 0]\n\ 00465 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00466 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00467 # is the normal camera intrinsic matrix for the rectified image.\n\ 00468 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00469 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00470 # (cx', cy') - these may differ from the values in K.\n\ 00471 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00472 # also have R = the identity and P[1:3,1:3] = K.\n\ 00473 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00474 # position of the optical center of the second camera in the first\n\ 00475 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00476 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00477 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00478 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00479 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00480 # the rectified image is given by:\n\ 00481 # [u v w]' = P * [X Y Z 1]'\n\ 00482 # x = u / w\n\ 00483 # y = v / w\n\ 00484 # This holds for both images of a stereo pair.\n\ 00485 float64[12] P # 3x4 row-major matrix\n\ 00486 \n\ 00487 \n\ 00488 #######################################################################\n\ 00489 # Operational Parameters #\n\ 00490 #######################################################################\n\ 00491 # These define the image region actually captured by the camera #\n\ 00492 # driver. Although they affect the geometry of the output image, they #\n\ 00493 # may be changed freely without recalibrating the camera. #\n\ 00494 #######################################################################\n\ 00495 \n\ 00496 # Binning refers here to any camera setting which combines rectangular\n\ 00497 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00498 # resolution of the output image to\n\ 00499 # (width / binning_x) x (height / binning_y).\n\ 00500 # The default values binning_x = binning_y = 0 is considered the same\n\ 00501 # as binning_x = binning_y = 1 (no subsampling).\n\ 00502 uint32 binning_x\n\ 00503 uint32 binning_y\n\ 00504 \n\ 00505 # Region of interest (subwindow of full camera resolution), given in\n\ 00506 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00507 # always denotes the same window of pixels on the camera sensor,\n\ 00508 # regardless of binning settings.\n\ 00509 # The default setting of roi (all values 0) is considered the same as\n\ 00510 # full resolution (roi.width = width, roi.height = height).\n\ 00511 RegionOfInterest roi\n\ 00512 \n\ 00513 ================================================================================\n\ 00514 MSG: sensor_msgs/RegionOfInterest\n\ 00515 # This message is used to specify a region of interest within an image.\n\ 00516 #\n\ 00517 # When used to specify the ROI setting of the camera when the image was\n\ 00518 # taken, the height and width fields should either match the height and\n\ 00519 # width fields for the associated image; or height = width = 0\n\ 00520 # indicates that the full resolution image was captured.\n\ 00521 \n\ 00522 uint32 x_offset # Leftmost pixel of the ROI\n\ 00523 # (0 if the ROI includes the left edge of the image)\n\ 00524 uint32 y_offset # Topmost pixel of the ROI\n\ 00525 # (0 if the ROI includes the top edge of the image)\n\ 00526 uint32 height # Height of ROI\n\ 00527 uint32 width # Width of ROI\n\ 00528 \n\ 00529 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00530 # ROI in this message. Typically this should be False if the full image\n\ 00531 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00532 # used).\n\ 00533 bool do_rectify\n\ 00534 \n\ 00535 ================================================================================\n\ 00536 MSG: geometry_msgs/Vector3\n\ 00537 # This represents a vector in free space. \n\ 00538 \n\ 00539 float64 x\n\ 00540 float64 y\n\ 00541 float64 z\n\ 00542 ================================================================================\n\ 00543 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00544 # Error codes for grasp and place planning\n\ 00545 \n\ 00546 # plan completed as expected\n\ 00547 int32 SUCCESS = 0\n\ 00548 \n\ 00549 # tf error encountered while transforming\n\ 00550 int32 TF_ERROR = 1 \n\ 00551 \n\ 00552 # some other error\n\ 00553 int32 OTHER_ERROR = 2\n\ 00554 \n\ 00555 # the actual value of this error code\n\ 00556 int32 value\n\ 00557 "; } 00558 public: 00559 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00560 00561 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00562 00563 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00564 { 00565 ros::serialization::OStream stream(write_ptr, 1000000000); 00566 ros::serialization::serialize(stream, grasps); 00567 ros::serialization::serialize(stream, result); 00568 return stream.getData(); 00569 } 00570 00571 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00572 { 00573 ros::serialization::IStream stream(read_ptr, 1000000000); 00574 ros::serialization::deserialize(stream, grasps); 00575 ros::serialization::deserialize(stream, result); 00576 return stream.getData(); 00577 } 00578 00579 ROS_DEPRECATED virtual uint32_t serializationLength() const 00580 { 00581 uint32_t size = 0; 00582 size += ros::serialization::serializationLength(grasps); 00583 size += ros::serialization::serializationLength(result); 00584 return size; 00585 } 00586 00587 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > Ptr; 00588 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> const> ConstPtr; 00589 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00590 }; // struct GraspAdjustResult 00591 typedef ::pr2_grasp_adjust::GraspAdjustResult_<std::allocator<void> > GraspAdjustResult; 00592 00593 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustResult> GraspAdjustResultPtr; 00594 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustResult const> GraspAdjustResultConstPtr; 00595 00596 00597 template<typename ContainerAllocator> 00598 std::ostream& operator<<(std::ostream& s, const ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> & v) 00599 { 00600 ros::message_operations::Printer< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> >::stream(s, "", v); 00601 return s;} 00602 00603 } // namespace pr2_grasp_adjust 00604 00605 namespace ros 00606 { 00607 namespace message_traits 00608 { 00609 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > : public TrueType {}; 00610 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> const> : public TrueType {}; 00611 template<class ContainerAllocator> 00612 struct MD5Sum< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > { 00613 static const char* value() 00614 { 00615 return "4b2c78da8eafa798492827fe57d55f30"; 00616 } 00617 00618 static const char* value(const ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> &) { return value(); } 00619 static const uint64_t static_value1 = 0x4b2c78da8eafa798ULL; 00620 static const uint64_t static_value2 = 0x492827fe57d55f30ULL; 00621 }; 00622 00623 template<class ContainerAllocator> 00624 struct DataType< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > { 00625 static const char* value() 00626 { 00627 return "pr2_grasp_adjust/GraspAdjustResult"; 00628 } 00629 00630 static const char* value(const ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> &) { return value(); } 00631 }; 00632 00633 template<class ContainerAllocator> 00634 struct Definition< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > { 00635 static const char* value() 00636 { 00637 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00638 #result definition\n\ 00639 \n\ 00640 object_manipulation_msgs/Grasp[] grasps\n\ 00641 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00642 \n\ 00643 \n\ 00644 ================================================================================\n\ 00645 MSG: object_manipulation_msgs/Grasp\n\ 00646 \n\ 00647 # The internal posture of the hand for the pre-grasp\n\ 00648 # only positions are used\n\ 00649 sensor_msgs/JointState pre_grasp_posture\n\ 00650 \n\ 00651 # The internal posture of the hand for the grasp\n\ 00652 # positions and efforts are used\n\ 00653 sensor_msgs/JointState grasp_posture\n\ 00654 \n\ 00655 # The position of the end-effector for the grasp relative to a reference frame \n\ 00656 # (that is always specified elsewhere, not in this message)\n\ 00657 geometry_msgs/Pose grasp_pose\n\ 00658 \n\ 00659 # The estimated probability of success for this grasp\n\ 00660 float64 success_probability\n\ 00661 \n\ 00662 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00663 bool cluster_rep\n\ 00664 \n\ 00665 # how far the pre-grasp should ideally be away from the grasp\n\ 00666 float32 desired_approach_distance\n\ 00667 \n\ 00668 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00669 # for the grasp not to be rejected\n\ 00670 float32 min_approach_distance\n\ 00671 \n\ 00672 # an optional list of obstacles that we have semantic information about\n\ 00673 # and that we expect might move in the course of executing this grasp\n\ 00674 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00675 # execution, grasp executors will not check for collisions against these objects\n\ 00676 GraspableObject[] moved_obstacles\n\ 00677 \n\ 00678 ================================================================================\n\ 00679 MSG: sensor_msgs/JointState\n\ 00680 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00681 #\n\ 00682 # The state of each joint (revolute or prismatic) is defined by:\n\ 00683 # * the position of the joint (rad or m),\n\ 00684 # * the velocity of the joint (rad/s or m/s) and \n\ 00685 # * the effort that is applied in the joint (Nm or N).\n\ 00686 #\n\ 00687 # Each joint is uniquely identified by its name\n\ 00688 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00689 # in one message have to be recorded at the same time.\n\ 00690 #\n\ 00691 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00692 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00693 # effort associated with them, you can leave the effort array empty. \n\ 00694 #\n\ 00695 # All arrays in this message should have the same size, or be empty.\n\ 00696 # This is the only way to uniquely associate the joint name with the correct\n\ 00697 # states.\n\ 00698 \n\ 00699 \n\ 00700 Header header\n\ 00701 \n\ 00702 string[] name\n\ 00703 float64[] position\n\ 00704 float64[] velocity\n\ 00705 float64[] effort\n\ 00706 \n\ 00707 ================================================================================\n\ 00708 MSG: std_msgs/Header\n\ 00709 # Standard metadata for higher-level stamped data types.\n\ 00710 # This is generally used to communicate timestamped data \n\ 00711 # in a particular coordinate frame.\n\ 00712 # \n\ 00713 # sequence ID: consecutively increasing ID \n\ 00714 uint32 seq\n\ 00715 #Two-integer timestamp that is expressed as:\n\ 00716 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00717 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00718 # time-handling sugar is provided by the client library\n\ 00719 time stamp\n\ 00720 #Frame this data is associated with\n\ 00721 # 0: no frame\n\ 00722 # 1: global frame\n\ 00723 string frame_id\n\ 00724 \n\ 00725 ================================================================================\n\ 00726 MSG: geometry_msgs/Pose\n\ 00727 # A representation of pose in free space, composed of postion and orientation. \n\ 00728 Point position\n\ 00729 Quaternion orientation\n\ 00730 \n\ 00731 ================================================================================\n\ 00732 MSG: geometry_msgs/Point\n\ 00733 # This contains the position of a point in free space\n\ 00734 float64 x\n\ 00735 float64 y\n\ 00736 float64 z\n\ 00737 \n\ 00738 ================================================================================\n\ 00739 MSG: geometry_msgs/Quaternion\n\ 00740 # This represents an orientation in free space in quaternion form.\n\ 00741 \n\ 00742 float64 x\n\ 00743 float64 y\n\ 00744 float64 z\n\ 00745 float64 w\n\ 00746 \n\ 00747 ================================================================================\n\ 00748 MSG: object_manipulation_msgs/GraspableObject\n\ 00749 # an object that the object_manipulator can work on\n\ 00750 \n\ 00751 # a graspable object can be represented in multiple ways. This message\n\ 00752 # can contain all of them. Which one is actually used is up to the receiver\n\ 00753 # of this message. When adding new representations, one must be careful that\n\ 00754 # they have reasonable lightweight defaults indicating that that particular\n\ 00755 # representation is not available.\n\ 00756 \n\ 00757 # the tf frame to be used as a reference frame when combining information from\n\ 00758 # the different representations below\n\ 00759 string reference_frame_id\n\ 00760 \n\ 00761 # potential recognition results from a database of models\n\ 00762 # all poses are relative to the object reference pose\n\ 00763 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00764 \n\ 00765 # the point cloud itself\n\ 00766 sensor_msgs/PointCloud cluster\n\ 00767 \n\ 00768 # a region of a PointCloud2 of interest\n\ 00769 object_manipulation_msgs/SceneRegion region\n\ 00770 \n\ 00771 # the name that this object has in the collision environment\n\ 00772 string collision_name\n\ 00773 ================================================================================\n\ 00774 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00775 # Informs that a specific model from the Model Database has been \n\ 00776 # identified at a certain location\n\ 00777 \n\ 00778 # the database id of the model\n\ 00779 int32 model_id\n\ 00780 \n\ 00781 # the pose that it can be found in\n\ 00782 geometry_msgs/PoseStamped pose\n\ 00783 \n\ 00784 # a measure of the confidence level in this detection result\n\ 00785 float32 confidence\n\ 00786 \n\ 00787 # the name of the object detector that generated this detection result\n\ 00788 string detector_name\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: geometry_msgs/PoseStamped\n\ 00792 # A Pose with reference coordinate frame and timestamp\n\ 00793 Header header\n\ 00794 Pose pose\n\ 00795 \n\ 00796 ================================================================================\n\ 00797 MSG: sensor_msgs/PointCloud\n\ 00798 # This message holds a collection of 3d points, plus optional additional\n\ 00799 # information about each point.\n\ 00800 \n\ 00801 # Time of sensor data acquisition, coordinate frame ID.\n\ 00802 Header header\n\ 00803 \n\ 00804 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00805 # in the frame given in the header.\n\ 00806 geometry_msgs/Point32[] points\n\ 00807 \n\ 00808 # Each channel should have the same number of elements as points array,\n\ 00809 # and the data in each channel should correspond 1:1 with each point.\n\ 00810 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00811 ChannelFloat32[] channels\n\ 00812 \n\ 00813 ================================================================================\n\ 00814 MSG: geometry_msgs/Point32\n\ 00815 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00816 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00817 # \n\ 00818 # This recommendation is to promote interoperability. \n\ 00819 #\n\ 00820 # This message is designed to take up less space when sending\n\ 00821 # lots of points at once, as in the case of a PointCloud. \n\ 00822 \n\ 00823 float32 x\n\ 00824 float32 y\n\ 00825 float32 z\n\ 00826 ================================================================================\n\ 00827 MSG: sensor_msgs/ChannelFloat32\n\ 00828 # This message is used by the PointCloud message to hold optional data\n\ 00829 # associated with each point in the cloud. The length of the values\n\ 00830 # array should be the same as the length of the points array in the\n\ 00831 # PointCloud, and each value should be associated with the corresponding\n\ 00832 # point.\n\ 00833 \n\ 00834 # Channel names in existing practice include:\n\ 00835 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00836 # This is opposite to usual conventions but remains for\n\ 00837 # historical reasons. The newer PointCloud2 message has no\n\ 00838 # such problem.\n\ 00839 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00840 # (R,G,B) values packed into the least significant 24 bits,\n\ 00841 # in order.\n\ 00842 # \"intensity\" - laser or pixel intensity.\n\ 00843 # \"distance\"\n\ 00844 \n\ 00845 # The channel name should give semantics of the channel (e.g.\n\ 00846 # \"intensity\" instead of \"value\").\n\ 00847 string name\n\ 00848 \n\ 00849 # The values array should be 1-1 with the elements of the associated\n\ 00850 # PointCloud.\n\ 00851 float32[] values\n\ 00852 \n\ 00853 ================================================================================\n\ 00854 MSG: object_manipulation_msgs/SceneRegion\n\ 00855 # Point cloud\n\ 00856 sensor_msgs/PointCloud2 cloud\n\ 00857 \n\ 00858 # Indices for the region of interest\n\ 00859 int32[] mask\n\ 00860 \n\ 00861 # One of the corresponding 2D images, if applicable\n\ 00862 sensor_msgs/Image image\n\ 00863 \n\ 00864 # The disparity image, if applicable\n\ 00865 sensor_msgs/Image disparity_image\n\ 00866 \n\ 00867 # Camera info for the camera that took the image\n\ 00868 sensor_msgs/CameraInfo cam_info\n\ 00869 \n\ 00870 # a 3D region of interest for grasp planning\n\ 00871 geometry_msgs/PoseStamped roi_box_pose\n\ 00872 geometry_msgs/Vector3 roi_box_dims\n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: sensor_msgs/PointCloud2\n\ 00876 # This message holds a collection of N-dimensional points, which may\n\ 00877 # contain additional information such as normals, intensity, etc. The\n\ 00878 # point data is stored as a binary blob, its layout described by the\n\ 00879 # contents of the \"fields\" array.\n\ 00880 \n\ 00881 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00882 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00883 # camera depth sensors such as stereo or time-of-flight.\n\ 00884 \n\ 00885 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00886 # points).\n\ 00887 Header header\n\ 00888 \n\ 00889 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00890 # 1 and width is the length of the point cloud.\n\ 00891 uint32 height\n\ 00892 uint32 width\n\ 00893 \n\ 00894 # Describes the channels and their layout in the binary data blob.\n\ 00895 PointField[] fields\n\ 00896 \n\ 00897 bool is_bigendian # Is this data bigendian?\n\ 00898 uint32 point_step # Length of a point in bytes\n\ 00899 uint32 row_step # Length of a row in bytes\n\ 00900 uint8[] data # Actual point data, size is (row_step*height)\n\ 00901 \n\ 00902 bool is_dense # True if there are no invalid points\n\ 00903 \n\ 00904 ================================================================================\n\ 00905 MSG: sensor_msgs/PointField\n\ 00906 # This message holds the description of one point entry in the\n\ 00907 # PointCloud2 message format.\n\ 00908 uint8 INT8 = 1\n\ 00909 uint8 UINT8 = 2\n\ 00910 uint8 INT16 = 3\n\ 00911 uint8 UINT16 = 4\n\ 00912 uint8 INT32 = 5\n\ 00913 uint8 UINT32 = 6\n\ 00914 uint8 FLOAT32 = 7\n\ 00915 uint8 FLOAT64 = 8\n\ 00916 \n\ 00917 string name # Name of field\n\ 00918 uint32 offset # Offset from start of point struct\n\ 00919 uint8 datatype # Datatype enumeration, see above\n\ 00920 uint32 count # How many elements in the field\n\ 00921 \n\ 00922 ================================================================================\n\ 00923 MSG: sensor_msgs/Image\n\ 00924 # This message contains an uncompressed image\n\ 00925 # (0, 0) is at top-left corner of image\n\ 00926 #\n\ 00927 \n\ 00928 Header header # Header timestamp should be acquisition time of image\n\ 00929 # Header frame_id should be optical frame of camera\n\ 00930 # origin of frame should be optical center of cameara\n\ 00931 # +x should point to the right in the image\n\ 00932 # +y should point down in the image\n\ 00933 # +z should point into to plane of the image\n\ 00934 # If the frame_id here and the frame_id of the CameraInfo\n\ 00935 # message associated with the image conflict\n\ 00936 # the behavior is undefined\n\ 00937 \n\ 00938 uint32 height # image height, that is, number of rows\n\ 00939 uint32 width # image width, that is, number of columns\n\ 00940 \n\ 00941 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00942 # If you want to standardize a new string format, join\n\ 00943 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00944 \n\ 00945 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00946 # taken from the list of strings in src/image_encodings.cpp\n\ 00947 \n\ 00948 uint8 is_bigendian # is this data bigendian?\n\ 00949 uint32 step # Full row length in bytes\n\ 00950 uint8[] data # actual matrix data, size is (step * rows)\n\ 00951 \n\ 00952 ================================================================================\n\ 00953 MSG: sensor_msgs/CameraInfo\n\ 00954 # This message defines meta information for a camera. It should be in a\n\ 00955 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00956 # image topics named:\n\ 00957 #\n\ 00958 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00959 # image - monochrome, distorted\n\ 00960 # image_color - color, distorted\n\ 00961 # image_rect - monochrome, rectified\n\ 00962 # image_rect_color - color, rectified\n\ 00963 #\n\ 00964 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00965 # for producing the four processed image topics from image_raw and\n\ 00966 # camera_info. The meaning of the camera parameters are described in\n\ 00967 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00968 #\n\ 00969 # The image_geometry package provides a user-friendly interface to\n\ 00970 # common operations using this meta information. If you want to, e.g.,\n\ 00971 # project a 3d point into image coordinates, we strongly recommend\n\ 00972 # using image_geometry.\n\ 00973 #\n\ 00974 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00975 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00976 # indicates an uncalibrated camera.\n\ 00977 \n\ 00978 #######################################################################\n\ 00979 # Image acquisition info #\n\ 00980 #######################################################################\n\ 00981 \n\ 00982 # Time of image acquisition, camera coordinate frame ID\n\ 00983 Header header # Header timestamp should be acquisition time of image\n\ 00984 # Header frame_id should be optical frame of camera\n\ 00985 # origin of frame should be optical center of camera\n\ 00986 # +x should point to the right in the image\n\ 00987 # +y should point down in the image\n\ 00988 # +z should point into the plane of the image\n\ 00989 \n\ 00990 \n\ 00991 #######################################################################\n\ 00992 # Calibration Parameters #\n\ 00993 #######################################################################\n\ 00994 # These are fixed during camera calibration. Their values will be the #\n\ 00995 # same in all messages until the camera is recalibrated. Note that #\n\ 00996 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00997 # #\n\ 00998 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00999 # to: #\n\ 01000 # 1. An undistorted image (requires D and K) #\n\ 01001 # 2. A rectified image (requires D, K, R) #\n\ 01002 # The projection matrix P projects 3D points into the rectified image.#\n\ 01003 #######################################################################\n\ 01004 \n\ 01005 # The image dimensions with which the camera was calibrated. Normally\n\ 01006 # this will be the full camera resolution in pixels.\n\ 01007 uint32 height\n\ 01008 uint32 width\n\ 01009 \n\ 01010 # The distortion model used. Supported models are listed in\n\ 01011 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01012 # simple model of radial and tangential distortion - is sufficent.\n\ 01013 string distortion_model\n\ 01014 \n\ 01015 # The distortion parameters, size depending on the distortion model.\n\ 01016 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01017 float64[] D\n\ 01018 \n\ 01019 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01020 # [fx 0 cx]\n\ 01021 # K = [ 0 fy cy]\n\ 01022 # [ 0 0 1]\n\ 01023 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01024 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01025 # (cx, cy).\n\ 01026 float64[9] K # 3x3 row-major matrix\n\ 01027 \n\ 01028 # Rectification matrix (stereo cameras only)\n\ 01029 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01030 # stereo image plane so that epipolar lines in both stereo images are\n\ 01031 # parallel.\n\ 01032 float64[9] R # 3x3 row-major matrix\n\ 01033 \n\ 01034 # Projection/camera matrix\n\ 01035 # [fx' 0 cx' Tx]\n\ 01036 # P = [ 0 fy' cy' Ty]\n\ 01037 # [ 0 0 1 0]\n\ 01038 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01039 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01040 # is the normal camera intrinsic matrix for the rectified image.\n\ 01041 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01042 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01043 # (cx', cy') - these may differ from the values in K.\n\ 01044 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01045 # also have R = the identity and P[1:3,1:3] = K.\n\ 01046 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01047 # position of the optical center of the second camera in the first\n\ 01048 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01049 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01050 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01051 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01052 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01053 # the rectified image is given by:\n\ 01054 # [u v w]' = P * [X Y Z 1]'\n\ 01055 # x = u / w\n\ 01056 # y = v / w\n\ 01057 # This holds for both images of a stereo pair.\n\ 01058 float64[12] P # 3x4 row-major matrix\n\ 01059 \n\ 01060 \n\ 01061 #######################################################################\n\ 01062 # Operational Parameters #\n\ 01063 #######################################################################\n\ 01064 # These define the image region actually captured by the camera #\n\ 01065 # driver. Although they affect the geometry of the output image, they #\n\ 01066 # may be changed freely without recalibrating the camera. #\n\ 01067 #######################################################################\n\ 01068 \n\ 01069 # Binning refers here to any camera setting which combines rectangular\n\ 01070 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01071 # resolution of the output image to\n\ 01072 # (width / binning_x) x (height / binning_y).\n\ 01073 # The default values binning_x = binning_y = 0 is considered the same\n\ 01074 # as binning_x = binning_y = 1 (no subsampling).\n\ 01075 uint32 binning_x\n\ 01076 uint32 binning_y\n\ 01077 \n\ 01078 # Region of interest (subwindow of full camera resolution), given in\n\ 01079 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01080 # always denotes the same window of pixels on the camera sensor,\n\ 01081 # regardless of binning settings.\n\ 01082 # The default setting of roi (all values 0) is considered the same as\n\ 01083 # full resolution (roi.width = width, roi.height = height).\n\ 01084 RegionOfInterest roi\n\ 01085 \n\ 01086 ================================================================================\n\ 01087 MSG: sensor_msgs/RegionOfInterest\n\ 01088 # This message is used to specify a region of interest within an image.\n\ 01089 #\n\ 01090 # When used to specify the ROI setting of the camera when the image was\n\ 01091 # taken, the height and width fields should either match the height and\n\ 01092 # width fields for the associated image; or height = width = 0\n\ 01093 # indicates that the full resolution image was captured.\n\ 01094 \n\ 01095 uint32 x_offset # Leftmost pixel of the ROI\n\ 01096 # (0 if the ROI includes the left edge of the image)\n\ 01097 uint32 y_offset # Topmost pixel of the ROI\n\ 01098 # (0 if the ROI includes the top edge of the image)\n\ 01099 uint32 height # Height of ROI\n\ 01100 uint32 width # Width of ROI\n\ 01101 \n\ 01102 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01103 # ROI in this message. Typically this should be False if the full image\n\ 01104 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01105 # used).\n\ 01106 bool do_rectify\n\ 01107 \n\ 01108 ================================================================================\n\ 01109 MSG: geometry_msgs/Vector3\n\ 01110 # This represents a vector in free space. \n\ 01111 \n\ 01112 float64 x\n\ 01113 float64 y\n\ 01114 float64 z\n\ 01115 ================================================================================\n\ 01116 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01117 # Error codes for grasp and place planning\n\ 01118 \n\ 01119 # plan completed as expected\n\ 01120 int32 SUCCESS = 0\n\ 01121 \n\ 01122 # tf error encountered while transforming\n\ 01123 int32 TF_ERROR = 1 \n\ 01124 \n\ 01125 # some other error\n\ 01126 int32 OTHER_ERROR = 2\n\ 01127 \n\ 01128 # the actual value of this error code\n\ 01129 int32 value\n\ 01130 "; 01131 } 01132 01133 static const char* value(const ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> &) { return value(); } 01134 }; 01135 01136 } // namespace message_traits 01137 } // namespace ros 01138 01139 namespace ros 01140 { 01141 namespace serialization 01142 { 01143 01144 template<class ContainerAllocator> struct Serializer< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > 01145 { 01146 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01147 { 01148 stream.next(m.grasps); 01149 stream.next(m.result); 01150 } 01151 01152 ROS_DECLARE_ALLINONE_SERIALIZER; 01153 }; // struct GraspAdjustResult_ 01154 } // namespace serialization 01155 } // namespace ros 01156 01157 namespace ros 01158 { 01159 namespace message_operations 01160 { 01161 01162 template<class ContainerAllocator> 01163 struct Printer< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> > 01164 { 01165 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> & v) 01166 { 01167 s << indent << "grasps[]" << std::endl; 01168 for (size_t i = 0; i < v.grasps.size(); ++i) 01169 { 01170 s << indent << " grasps[" << i << "]: "; 01171 s << std::endl; 01172 s << indent; 01173 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasps[i]); 01174 } 01175 s << indent << "result: "; 01176 s << std::endl; 01177 Printer< ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> >::stream(s, indent + " ", v.result); 01178 } 01179 }; 01180 01181 01182 } // namespace message_operations 01183 } // namespace ros 01184 01185 #endif // PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTRESULT_H 01186