$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_grasp_adjust/msg/GraspAdjustActionResult.msg */ 00002 #ifndef PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTIONRESULT_H 00003 #define PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTIONRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalStatus.h" 00019 #include "pr2_grasp_adjust/GraspAdjustResult.h" 00020 00021 namespace pr2_grasp_adjust 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspAdjustActionResult_ { 00025 typedef GraspAdjustActionResult_<ContainerAllocator> Type; 00026 00027 GraspAdjustActionResult_() 00028 : header() 00029 , status() 00030 , result() 00031 { 00032 } 00033 00034 GraspAdjustActionResult_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , status(_alloc) 00037 , result(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type; 00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status; 00046 00047 typedef ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> _result_type; 00048 ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> result; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "pr2_grasp_adjust/GraspAdjustActionResult"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "7f2f1631aa8a4b584f4e34d7398f3cd9"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalStatus status\n\ 00070 GraspAdjustResult result\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalStatus\n\ 00092 GoalID goal_id\n\ 00093 uint8 status\n\ 00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00097 # and has since completed its execution (Terminal State)\n\ 00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00100 # to some failure (Terminal State)\n\ 00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00102 # because the goal was unattainable or invalid (Terminal State)\n\ 00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00104 # and has not yet completed execution\n\ 00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00106 # but the action server has not yet confirmed that the goal is canceled\n\ 00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00108 # and was successfully cancelled (Terminal State)\n\ 00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00110 # sent over the wire by an action server\n\ 00111 \n\ 00112 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00113 string text\n\ 00114 \n\ 00115 \n\ 00116 ================================================================================\n\ 00117 MSG: actionlib_msgs/GoalID\n\ 00118 # The stamp should store the time at which this goal was requested.\n\ 00119 # It is used by an action server when it tries to preempt all\n\ 00120 # goals that were requested before a certain time\n\ 00121 time stamp\n\ 00122 \n\ 00123 # The id provides a way to associate feedback and\n\ 00124 # result message with specific goal requests. The id\n\ 00125 # specified must be unique.\n\ 00126 string id\n\ 00127 \n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: pr2_grasp_adjust/GraspAdjustResult\n\ 00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00132 #result definition\n\ 00133 \n\ 00134 object_manipulation_msgs/Grasp[] grasps\n\ 00135 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00136 \n\ 00137 \n\ 00138 ================================================================================\n\ 00139 MSG: object_manipulation_msgs/Grasp\n\ 00140 \n\ 00141 # The internal posture of the hand for the pre-grasp\n\ 00142 # only positions are used\n\ 00143 sensor_msgs/JointState pre_grasp_posture\n\ 00144 \n\ 00145 # The internal posture of the hand for the grasp\n\ 00146 # positions and efforts are used\n\ 00147 sensor_msgs/JointState grasp_posture\n\ 00148 \n\ 00149 # The position of the end-effector for the grasp relative to a reference frame \n\ 00150 # (that is always specified elsewhere, not in this message)\n\ 00151 geometry_msgs/Pose grasp_pose\n\ 00152 \n\ 00153 # The estimated probability of success for this grasp\n\ 00154 float64 success_probability\n\ 00155 \n\ 00156 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00157 bool cluster_rep\n\ 00158 \n\ 00159 # how far the pre-grasp should ideally be away from the grasp\n\ 00160 float32 desired_approach_distance\n\ 00161 \n\ 00162 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00163 # for the grasp not to be rejected\n\ 00164 float32 min_approach_distance\n\ 00165 \n\ 00166 # an optional list of obstacles that we have semantic information about\n\ 00167 # and that we expect might move in the course of executing this grasp\n\ 00168 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00169 # execution, grasp executors will not check for collisions against these objects\n\ 00170 GraspableObject[] moved_obstacles\n\ 00171 \n\ 00172 ================================================================================\n\ 00173 MSG: sensor_msgs/JointState\n\ 00174 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00175 #\n\ 00176 # The state of each joint (revolute or prismatic) is defined by:\n\ 00177 # * the position of the joint (rad or m),\n\ 00178 # * the velocity of the joint (rad/s or m/s) and \n\ 00179 # * the effort that is applied in the joint (Nm or N).\n\ 00180 #\n\ 00181 # Each joint is uniquely identified by its name\n\ 00182 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00183 # in one message have to be recorded at the same time.\n\ 00184 #\n\ 00185 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00186 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00187 # effort associated with them, you can leave the effort array empty. \n\ 00188 #\n\ 00189 # All arrays in this message should have the same size, or be empty.\n\ 00190 # This is the only way to uniquely associate the joint name with the correct\n\ 00191 # states.\n\ 00192 \n\ 00193 \n\ 00194 Header header\n\ 00195 \n\ 00196 string[] name\n\ 00197 float64[] position\n\ 00198 float64[] velocity\n\ 00199 float64[] effort\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: geometry_msgs/Pose\n\ 00203 # A representation of pose in free space, composed of postion and orientation. \n\ 00204 Point position\n\ 00205 Quaternion orientation\n\ 00206 \n\ 00207 ================================================================================\n\ 00208 MSG: geometry_msgs/Point\n\ 00209 # This contains the position of a point in free space\n\ 00210 float64 x\n\ 00211 float64 y\n\ 00212 float64 z\n\ 00213 \n\ 00214 ================================================================================\n\ 00215 MSG: geometry_msgs/Quaternion\n\ 00216 # This represents an orientation in free space in quaternion form.\n\ 00217 \n\ 00218 float64 x\n\ 00219 float64 y\n\ 00220 float64 z\n\ 00221 float64 w\n\ 00222 \n\ 00223 ================================================================================\n\ 00224 MSG: object_manipulation_msgs/GraspableObject\n\ 00225 # an object that the object_manipulator can work on\n\ 00226 \n\ 00227 # a graspable object can be represented in multiple ways. This message\n\ 00228 # can contain all of them. Which one is actually used is up to the receiver\n\ 00229 # of this message. When adding new representations, one must be careful that\n\ 00230 # they have reasonable lightweight defaults indicating that that particular\n\ 00231 # representation is not available.\n\ 00232 \n\ 00233 # the tf frame to be used as a reference frame when combining information from\n\ 00234 # the different representations below\n\ 00235 string reference_frame_id\n\ 00236 \n\ 00237 # potential recognition results from a database of models\n\ 00238 # all poses are relative to the object reference pose\n\ 00239 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00240 \n\ 00241 # the point cloud itself\n\ 00242 sensor_msgs/PointCloud cluster\n\ 00243 \n\ 00244 # a region of a PointCloud2 of interest\n\ 00245 object_manipulation_msgs/SceneRegion region\n\ 00246 \n\ 00247 # the name that this object has in the collision environment\n\ 00248 string collision_name\n\ 00249 ================================================================================\n\ 00250 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00251 # Informs that a specific model from the Model Database has been \n\ 00252 # identified at a certain location\n\ 00253 \n\ 00254 # the database id of the model\n\ 00255 int32 model_id\n\ 00256 \n\ 00257 # the pose that it can be found in\n\ 00258 geometry_msgs/PoseStamped pose\n\ 00259 \n\ 00260 # a measure of the confidence level in this detection result\n\ 00261 float32 confidence\n\ 00262 \n\ 00263 # the name of the object detector that generated this detection result\n\ 00264 string detector_name\n\ 00265 \n\ 00266 ================================================================================\n\ 00267 MSG: geometry_msgs/PoseStamped\n\ 00268 # A Pose with reference coordinate frame and timestamp\n\ 00269 Header header\n\ 00270 Pose pose\n\ 00271 \n\ 00272 ================================================================================\n\ 00273 MSG: sensor_msgs/PointCloud\n\ 00274 # This message holds a collection of 3d points, plus optional additional\n\ 00275 # information about each point.\n\ 00276 \n\ 00277 # Time of sensor data acquisition, coordinate frame ID.\n\ 00278 Header header\n\ 00279 \n\ 00280 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00281 # in the frame given in the header.\n\ 00282 geometry_msgs/Point32[] points\n\ 00283 \n\ 00284 # Each channel should have the same number of elements as points array,\n\ 00285 # and the data in each channel should correspond 1:1 with each point.\n\ 00286 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00287 ChannelFloat32[] channels\n\ 00288 \n\ 00289 ================================================================================\n\ 00290 MSG: geometry_msgs/Point32\n\ 00291 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00292 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00293 # \n\ 00294 # This recommendation is to promote interoperability. \n\ 00295 #\n\ 00296 # This message is designed to take up less space when sending\n\ 00297 # lots of points at once, as in the case of a PointCloud. \n\ 00298 \n\ 00299 float32 x\n\ 00300 float32 y\n\ 00301 float32 z\n\ 00302 ================================================================================\n\ 00303 MSG: sensor_msgs/ChannelFloat32\n\ 00304 # This message is used by the PointCloud message to hold optional data\n\ 00305 # associated with each point in the cloud. The length of the values\n\ 00306 # array should be the same as the length of the points array in the\n\ 00307 # PointCloud, and each value should be associated with the corresponding\n\ 00308 # point.\n\ 00309 \n\ 00310 # Channel names in existing practice include:\n\ 00311 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00312 # This is opposite to usual conventions but remains for\n\ 00313 # historical reasons. The newer PointCloud2 message has no\n\ 00314 # such problem.\n\ 00315 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00316 # (R,G,B) values packed into the least significant 24 bits,\n\ 00317 # in order.\n\ 00318 # \"intensity\" - laser or pixel intensity.\n\ 00319 # \"distance\"\n\ 00320 \n\ 00321 # The channel name should give semantics of the channel (e.g.\n\ 00322 # \"intensity\" instead of \"value\").\n\ 00323 string name\n\ 00324 \n\ 00325 # The values array should be 1-1 with the elements of the associated\n\ 00326 # PointCloud.\n\ 00327 float32[] values\n\ 00328 \n\ 00329 ================================================================================\n\ 00330 MSG: object_manipulation_msgs/SceneRegion\n\ 00331 # Point cloud\n\ 00332 sensor_msgs/PointCloud2 cloud\n\ 00333 \n\ 00334 # Indices for the region of interest\n\ 00335 int32[] mask\n\ 00336 \n\ 00337 # One of the corresponding 2D images, if applicable\n\ 00338 sensor_msgs/Image image\n\ 00339 \n\ 00340 # The disparity image, if applicable\n\ 00341 sensor_msgs/Image disparity_image\n\ 00342 \n\ 00343 # Camera info for the camera that took the image\n\ 00344 sensor_msgs/CameraInfo cam_info\n\ 00345 \n\ 00346 # a 3D region of interest for grasp planning\n\ 00347 geometry_msgs/PoseStamped roi_box_pose\n\ 00348 geometry_msgs/Vector3 roi_box_dims\n\ 00349 \n\ 00350 ================================================================================\n\ 00351 MSG: sensor_msgs/PointCloud2\n\ 00352 # This message holds a collection of N-dimensional points, which may\n\ 00353 # contain additional information such as normals, intensity, etc. The\n\ 00354 # point data is stored as a binary blob, its layout described by the\n\ 00355 # contents of the \"fields\" array.\n\ 00356 \n\ 00357 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00358 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00359 # camera depth sensors such as stereo or time-of-flight.\n\ 00360 \n\ 00361 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00362 # points).\n\ 00363 Header header\n\ 00364 \n\ 00365 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00366 # 1 and width is the length of the point cloud.\n\ 00367 uint32 height\n\ 00368 uint32 width\n\ 00369 \n\ 00370 # Describes the channels and their layout in the binary data blob.\n\ 00371 PointField[] fields\n\ 00372 \n\ 00373 bool is_bigendian # Is this data bigendian?\n\ 00374 uint32 point_step # Length of a point in bytes\n\ 00375 uint32 row_step # Length of a row in bytes\n\ 00376 uint8[] data # Actual point data, size is (row_step*height)\n\ 00377 \n\ 00378 bool is_dense # True if there are no invalid points\n\ 00379 \n\ 00380 ================================================================================\n\ 00381 MSG: sensor_msgs/PointField\n\ 00382 # This message holds the description of one point entry in the\n\ 00383 # PointCloud2 message format.\n\ 00384 uint8 INT8 = 1\n\ 00385 uint8 UINT8 = 2\n\ 00386 uint8 INT16 = 3\n\ 00387 uint8 UINT16 = 4\n\ 00388 uint8 INT32 = 5\n\ 00389 uint8 UINT32 = 6\n\ 00390 uint8 FLOAT32 = 7\n\ 00391 uint8 FLOAT64 = 8\n\ 00392 \n\ 00393 string name # Name of field\n\ 00394 uint32 offset # Offset from start of point struct\n\ 00395 uint8 datatype # Datatype enumeration, see above\n\ 00396 uint32 count # How many elements in the field\n\ 00397 \n\ 00398 ================================================================================\n\ 00399 MSG: sensor_msgs/Image\n\ 00400 # This message contains an uncompressed image\n\ 00401 # (0, 0) is at top-left corner of image\n\ 00402 #\n\ 00403 \n\ 00404 Header header # Header timestamp should be acquisition time of image\n\ 00405 # Header frame_id should be optical frame of camera\n\ 00406 # origin of frame should be optical center of cameara\n\ 00407 # +x should point to the right in the image\n\ 00408 # +y should point down in the image\n\ 00409 # +z should point into to plane of the image\n\ 00410 # If the frame_id here and the frame_id of the CameraInfo\n\ 00411 # message associated with the image conflict\n\ 00412 # the behavior is undefined\n\ 00413 \n\ 00414 uint32 height # image height, that is, number of rows\n\ 00415 uint32 width # image width, that is, number of columns\n\ 00416 \n\ 00417 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00418 # If you want to standardize a new string format, join\n\ 00419 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00420 \n\ 00421 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00422 # taken from the list of strings in src/image_encodings.cpp\n\ 00423 \n\ 00424 uint8 is_bigendian # is this data bigendian?\n\ 00425 uint32 step # Full row length in bytes\n\ 00426 uint8[] data # actual matrix data, size is (step * rows)\n\ 00427 \n\ 00428 ================================================================================\n\ 00429 MSG: sensor_msgs/CameraInfo\n\ 00430 # This message defines meta information for a camera. It should be in a\n\ 00431 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00432 # image topics named:\n\ 00433 #\n\ 00434 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00435 # image - monochrome, distorted\n\ 00436 # image_color - color, distorted\n\ 00437 # image_rect - monochrome, rectified\n\ 00438 # image_rect_color - color, rectified\n\ 00439 #\n\ 00440 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00441 # for producing the four processed image topics from image_raw and\n\ 00442 # camera_info. The meaning of the camera parameters are described in\n\ 00443 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00444 #\n\ 00445 # The image_geometry package provides a user-friendly interface to\n\ 00446 # common operations using this meta information. If you want to, e.g.,\n\ 00447 # project a 3d point into image coordinates, we strongly recommend\n\ 00448 # using image_geometry.\n\ 00449 #\n\ 00450 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00451 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00452 # indicates an uncalibrated camera.\n\ 00453 \n\ 00454 #######################################################################\n\ 00455 # Image acquisition info #\n\ 00456 #######################################################################\n\ 00457 \n\ 00458 # Time of image acquisition, camera coordinate frame ID\n\ 00459 Header header # Header timestamp should be acquisition time of image\n\ 00460 # Header frame_id should be optical frame of camera\n\ 00461 # origin of frame should be optical center of camera\n\ 00462 # +x should point to the right in the image\n\ 00463 # +y should point down in the image\n\ 00464 # +z should point into the plane of the image\n\ 00465 \n\ 00466 \n\ 00467 #######################################################################\n\ 00468 # Calibration Parameters #\n\ 00469 #######################################################################\n\ 00470 # These are fixed during camera calibration. Their values will be the #\n\ 00471 # same in all messages until the camera is recalibrated. Note that #\n\ 00472 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00473 # #\n\ 00474 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00475 # to: #\n\ 00476 # 1. An undistorted image (requires D and K) #\n\ 00477 # 2. A rectified image (requires D, K, R) #\n\ 00478 # The projection matrix P projects 3D points into the rectified image.#\n\ 00479 #######################################################################\n\ 00480 \n\ 00481 # The image dimensions with which the camera was calibrated. Normally\n\ 00482 # this will be the full camera resolution in pixels.\n\ 00483 uint32 height\n\ 00484 uint32 width\n\ 00485 \n\ 00486 # The distortion model used. Supported models are listed in\n\ 00487 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00488 # simple model of radial and tangential distortion - is sufficent.\n\ 00489 string distortion_model\n\ 00490 \n\ 00491 # The distortion parameters, size depending on the distortion model.\n\ 00492 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00493 float64[] D\n\ 00494 \n\ 00495 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00496 # [fx 0 cx]\n\ 00497 # K = [ 0 fy cy]\n\ 00498 # [ 0 0 1]\n\ 00499 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00500 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00501 # (cx, cy).\n\ 00502 float64[9] K # 3x3 row-major matrix\n\ 00503 \n\ 00504 # Rectification matrix (stereo cameras only)\n\ 00505 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00506 # stereo image plane so that epipolar lines in both stereo images are\n\ 00507 # parallel.\n\ 00508 float64[9] R # 3x3 row-major matrix\n\ 00509 \n\ 00510 # Projection/camera matrix\n\ 00511 # [fx' 0 cx' Tx]\n\ 00512 # P = [ 0 fy' cy' Ty]\n\ 00513 # [ 0 0 1 0]\n\ 00514 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00515 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00516 # is the normal camera intrinsic matrix for the rectified image.\n\ 00517 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00518 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00519 # (cx', cy') - these may differ from the values in K.\n\ 00520 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00521 # also have R = the identity and P[1:3,1:3] = K.\n\ 00522 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00523 # position of the optical center of the second camera in the first\n\ 00524 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00525 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00526 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00527 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00528 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00529 # the rectified image is given by:\n\ 00530 # [u v w]' = P * [X Y Z 1]'\n\ 00531 # x = u / w\n\ 00532 # y = v / w\n\ 00533 # This holds for both images of a stereo pair.\n\ 00534 float64[12] P # 3x4 row-major matrix\n\ 00535 \n\ 00536 \n\ 00537 #######################################################################\n\ 00538 # Operational Parameters #\n\ 00539 #######################################################################\n\ 00540 # These define the image region actually captured by the camera #\n\ 00541 # driver. Although they affect the geometry of the output image, they #\n\ 00542 # may be changed freely without recalibrating the camera. #\n\ 00543 #######################################################################\n\ 00544 \n\ 00545 # Binning refers here to any camera setting which combines rectangular\n\ 00546 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00547 # resolution of the output image to\n\ 00548 # (width / binning_x) x (height / binning_y).\n\ 00549 # The default values binning_x = binning_y = 0 is considered the same\n\ 00550 # as binning_x = binning_y = 1 (no subsampling).\n\ 00551 uint32 binning_x\n\ 00552 uint32 binning_y\n\ 00553 \n\ 00554 # Region of interest (subwindow of full camera resolution), given in\n\ 00555 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00556 # always denotes the same window of pixels on the camera sensor,\n\ 00557 # regardless of binning settings.\n\ 00558 # The default setting of roi (all values 0) is considered the same as\n\ 00559 # full resolution (roi.width = width, roi.height = height).\n\ 00560 RegionOfInterest roi\n\ 00561 \n\ 00562 ================================================================================\n\ 00563 MSG: sensor_msgs/RegionOfInterest\n\ 00564 # This message is used to specify a region of interest within an image.\n\ 00565 #\n\ 00566 # When used to specify the ROI setting of the camera when the image was\n\ 00567 # taken, the height and width fields should either match the height and\n\ 00568 # width fields for the associated image; or height = width = 0\n\ 00569 # indicates that the full resolution image was captured.\n\ 00570 \n\ 00571 uint32 x_offset # Leftmost pixel of the ROI\n\ 00572 # (0 if the ROI includes the left edge of the image)\n\ 00573 uint32 y_offset # Topmost pixel of the ROI\n\ 00574 # (0 if the ROI includes the top edge of the image)\n\ 00575 uint32 height # Height of ROI\n\ 00576 uint32 width # Width of ROI\n\ 00577 \n\ 00578 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00579 # ROI in this message. Typically this should be False if the full image\n\ 00580 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00581 # used).\n\ 00582 bool do_rectify\n\ 00583 \n\ 00584 ================================================================================\n\ 00585 MSG: geometry_msgs/Vector3\n\ 00586 # This represents a vector in free space. \n\ 00587 \n\ 00588 float64 x\n\ 00589 float64 y\n\ 00590 float64 z\n\ 00591 ================================================================================\n\ 00592 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00593 # Error codes for grasp and place planning\n\ 00594 \n\ 00595 # plan completed as expected\n\ 00596 int32 SUCCESS = 0\n\ 00597 \n\ 00598 # tf error encountered while transforming\n\ 00599 int32 TF_ERROR = 1 \n\ 00600 \n\ 00601 # some other error\n\ 00602 int32 OTHER_ERROR = 2\n\ 00603 \n\ 00604 # the actual value of this error code\n\ 00605 int32 value\n\ 00606 "; } 00607 public: 00608 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00609 00610 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00611 00612 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00613 { 00614 ros::serialization::OStream stream(write_ptr, 1000000000); 00615 ros::serialization::serialize(stream, header); 00616 ros::serialization::serialize(stream, status); 00617 ros::serialization::serialize(stream, result); 00618 return stream.getData(); 00619 } 00620 00621 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00622 { 00623 ros::serialization::IStream stream(read_ptr, 1000000000); 00624 ros::serialization::deserialize(stream, header); 00625 ros::serialization::deserialize(stream, status); 00626 ros::serialization::deserialize(stream, result); 00627 return stream.getData(); 00628 } 00629 00630 ROS_DEPRECATED virtual uint32_t serializationLength() const 00631 { 00632 uint32_t size = 0; 00633 size += ros::serialization::serializationLength(header); 00634 size += ros::serialization::serializationLength(status); 00635 size += ros::serialization::serializationLength(result); 00636 return size; 00637 } 00638 00639 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > Ptr; 00640 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> const> ConstPtr; 00641 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00642 }; // struct GraspAdjustActionResult 00643 typedef ::pr2_grasp_adjust::GraspAdjustActionResult_<std::allocator<void> > GraspAdjustActionResult; 00644 00645 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustActionResult> GraspAdjustActionResultPtr; 00646 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustActionResult const> GraspAdjustActionResultConstPtr; 00647 00648 00649 template<typename ContainerAllocator> 00650 std::ostream& operator<<(std::ostream& s, const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> & v) 00651 { 00652 ros::message_operations::Printer< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> >::stream(s, "", v); 00653 return s;} 00654 00655 } // namespace pr2_grasp_adjust 00656 00657 namespace ros 00658 { 00659 namespace message_traits 00660 { 00661 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > : public TrueType {}; 00662 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> const> : public TrueType {}; 00663 template<class ContainerAllocator> 00664 struct MD5Sum< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > { 00665 static const char* value() 00666 { 00667 return "7f2f1631aa8a4b584f4e34d7398f3cd9"; 00668 } 00669 00670 static const char* value(const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> &) { return value(); } 00671 static const uint64_t static_value1 = 0x7f2f1631aa8a4b58ULL; 00672 static const uint64_t static_value2 = 0x4f4e34d7398f3cd9ULL; 00673 }; 00674 00675 template<class ContainerAllocator> 00676 struct DataType< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > { 00677 static const char* value() 00678 { 00679 return "pr2_grasp_adjust/GraspAdjustActionResult"; 00680 } 00681 00682 static const char* value(const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> &) { return value(); } 00683 }; 00684 00685 template<class ContainerAllocator> 00686 struct Definition< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > { 00687 static const char* value() 00688 { 00689 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00690 \n\ 00691 Header header\n\ 00692 actionlib_msgs/GoalStatus status\n\ 00693 GraspAdjustResult result\n\ 00694 \n\ 00695 ================================================================================\n\ 00696 MSG: std_msgs/Header\n\ 00697 # Standard metadata for higher-level stamped data types.\n\ 00698 # This is generally used to communicate timestamped data \n\ 00699 # in a particular coordinate frame.\n\ 00700 # \n\ 00701 # sequence ID: consecutively increasing ID \n\ 00702 uint32 seq\n\ 00703 #Two-integer timestamp that is expressed as:\n\ 00704 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00705 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00706 # time-handling sugar is provided by the client library\n\ 00707 time stamp\n\ 00708 #Frame this data is associated with\n\ 00709 # 0: no frame\n\ 00710 # 1: global frame\n\ 00711 string frame_id\n\ 00712 \n\ 00713 ================================================================================\n\ 00714 MSG: actionlib_msgs/GoalStatus\n\ 00715 GoalID goal_id\n\ 00716 uint8 status\n\ 00717 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00718 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00719 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00720 # and has since completed its execution (Terminal State)\n\ 00721 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00722 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00723 # to some failure (Terminal State)\n\ 00724 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00725 # because the goal was unattainable or invalid (Terminal State)\n\ 00726 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00727 # and has not yet completed execution\n\ 00728 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00729 # but the action server has not yet confirmed that the goal is canceled\n\ 00730 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00731 # and was successfully cancelled (Terminal State)\n\ 00732 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00733 # sent over the wire by an action server\n\ 00734 \n\ 00735 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00736 string text\n\ 00737 \n\ 00738 \n\ 00739 ================================================================================\n\ 00740 MSG: actionlib_msgs/GoalID\n\ 00741 # The stamp should store the time at which this goal was requested.\n\ 00742 # It is used by an action server when it tries to preempt all\n\ 00743 # goals that were requested before a certain time\n\ 00744 time stamp\n\ 00745 \n\ 00746 # The id provides a way to associate feedback and\n\ 00747 # result message with specific goal requests. The id\n\ 00748 # specified must be unique.\n\ 00749 string id\n\ 00750 \n\ 00751 \n\ 00752 ================================================================================\n\ 00753 MSG: pr2_grasp_adjust/GraspAdjustResult\n\ 00754 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00755 #result definition\n\ 00756 \n\ 00757 object_manipulation_msgs/Grasp[] grasps\n\ 00758 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00759 \n\ 00760 \n\ 00761 ================================================================================\n\ 00762 MSG: object_manipulation_msgs/Grasp\n\ 00763 \n\ 00764 # The internal posture of the hand for the pre-grasp\n\ 00765 # only positions are used\n\ 00766 sensor_msgs/JointState pre_grasp_posture\n\ 00767 \n\ 00768 # The internal posture of the hand for the grasp\n\ 00769 # positions and efforts are used\n\ 00770 sensor_msgs/JointState grasp_posture\n\ 00771 \n\ 00772 # The position of the end-effector for the grasp relative to a reference frame \n\ 00773 # (that is always specified elsewhere, not in this message)\n\ 00774 geometry_msgs/Pose grasp_pose\n\ 00775 \n\ 00776 # The estimated probability of success for this grasp\n\ 00777 float64 success_probability\n\ 00778 \n\ 00779 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00780 bool cluster_rep\n\ 00781 \n\ 00782 # how far the pre-grasp should ideally be away from the grasp\n\ 00783 float32 desired_approach_distance\n\ 00784 \n\ 00785 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00786 # for the grasp not to be rejected\n\ 00787 float32 min_approach_distance\n\ 00788 \n\ 00789 # an optional list of obstacles that we have semantic information about\n\ 00790 # and that we expect might move in the course of executing this grasp\n\ 00791 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00792 # execution, grasp executors will not check for collisions against these objects\n\ 00793 GraspableObject[] moved_obstacles\n\ 00794 \n\ 00795 ================================================================================\n\ 00796 MSG: sensor_msgs/JointState\n\ 00797 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00798 #\n\ 00799 # The state of each joint (revolute or prismatic) is defined by:\n\ 00800 # * the position of the joint (rad or m),\n\ 00801 # * the velocity of the joint (rad/s or m/s) and \n\ 00802 # * the effort that is applied in the joint (Nm or N).\n\ 00803 #\n\ 00804 # Each joint is uniquely identified by its name\n\ 00805 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00806 # in one message have to be recorded at the same time.\n\ 00807 #\n\ 00808 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00809 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00810 # effort associated with them, you can leave the effort array empty. \n\ 00811 #\n\ 00812 # All arrays in this message should have the same size, or be empty.\n\ 00813 # This is the only way to uniquely associate the joint name with the correct\n\ 00814 # states.\n\ 00815 \n\ 00816 \n\ 00817 Header header\n\ 00818 \n\ 00819 string[] name\n\ 00820 float64[] position\n\ 00821 float64[] velocity\n\ 00822 float64[] effort\n\ 00823 \n\ 00824 ================================================================================\n\ 00825 MSG: geometry_msgs/Pose\n\ 00826 # A representation of pose in free space, composed of postion and orientation. \n\ 00827 Point position\n\ 00828 Quaternion orientation\n\ 00829 \n\ 00830 ================================================================================\n\ 00831 MSG: geometry_msgs/Point\n\ 00832 # This contains the position of a point in free space\n\ 00833 float64 x\n\ 00834 float64 y\n\ 00835 float64 z\n\ 00836 \n\ 00837 ================================================================================\n\ 00838 MSG: geometry_msgs/Quaternion\n\ 00839 # This represents an orientation in free space in quaternion form.\n\ 00840 \n\ 00841 float64 x\n\ 00842 float64 y\n\ 00843 float64 z\n\ 00844 float64 w\n\ 00845 \n\ 00846 ================================================================================\n\ 00847 MSG: object_manipulation_msgs/GraspableObject\n\ 00848 # an object that the object_manipulator can work on\n\ 00849 \n\ 00850 # a graspable object can be represented in multiple ways. This message\n\ 00851 # can contain all of them. Which one is actually used is up to the receiver\n\ 00852 # of this message. When adding new representations, one must be careful that\n\ 00853 # they have reasonable lightweight defaults indicating that that particular\n\ 00854 # representation is not available.\n\ 00855 \n\ 00856 # the tf frame to be used as a reference frame when combining information from\n\ 00857 # the different representations below\n\ 00858 string reference_frame_id\n\ 00859 \n\ 00860 # potential recognition results from a database of models\n\ 00861 # all poses are relative to the object reference pose\n\ 00862 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00863 \n\ 00864 # the point cloud itself\n\ 00865 sensor_msgs/PointCloud cluster\n\ 00866 \n\ 00867 # a region of a PointCloud2 of interest\n\ 00868 object_manipulation_msgs/SceneRegion region\n\ 00869 \n\ 00870 # the name that this object has in the collision environment\n\ 00871 string collision_name\n\ 00872 ================================================================================\n\ 00873 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00874 # Informs that a specific model from the Model Database has been \n\ 00875 # identified at a certain location\n\ 00876 \n\ 00877 # the database id of the model\n\ 00878 int32 model_id\n\ 00879 \n\ 00880 # the pose that it can be found in\n\ 00881 geometry_msgs/PoseStamped pose\n\ 00882 \n\ 00883 # a measure of the confidence level in this detection result\n\ 00884 float32 confidence\n\ 00885 \n\ 00886 # the name of the object detector that generated this detection result\n\ 00887 string detector_name\n\ 00888 \n\ 00889 ================================================================================\n\ 00890 MSG: geometry_msgs/PoseStamped\n\ 00891 # A Pose with reference coordinate frame and timestamp\n\ 00892 Header header\n\ 00893 Pose pose\n\ 00894 \n\ 00895 ================================================================================\n\ 00896 MSG: sensor_msgs/PointCloud\n\ 00897 # This message holds a collection of 3d points, plus optional additional\n\ 00898 # information about each point.\n\ 00899 \n\ 00900 # Time of sensor data acquisition, coordinate frame ID.\n\ 00901 Header header\n\ 00902 \n\ 00903 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00904 # in the frame given in the header.\n\ 00905 geometry_msgs/Point32[] points\n\ 00906 \n\ 00907 # Each channel should have the same number of elements as points array,\n\ 00908 # and the data in each channel should correspond 1:1 with each point.\n\ 00909 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00910 ChannelFloat32[] channels\n\ 00911 \n\ 00912 ================================================================================\n\ 00913 MSG: geometry_msgs/Point32\n\ 00914 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00915 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00916 # \n\ 00917 # This recommendation is to promote interoperability. \n\ 00918 #\n\ 00919 # This message is designed to take up less space when sending\n\ 00920 # lots of points at once, as in the case of a PointCloud. \n\ 00921 \n\ 00922 float32 x\n\ 00923 float32 y\n\ 00924 float32 z\n\ 00925 ================================================================================\n\ 00926 MSG: sensor_msgs/ChannelFloat32\n\ 00927 # This message is used by the PointCloud message to hold optional data\n\ 00928 # associated with each point in the cloud. The length of the values\n\ 00929 # array should be the same as the length of the points array in the\n\ 00930 # PointCloud, and each value should be associated with the corresponding\n\ 00931 # point.\n\ 00932 \n\ 00933 # Channel names in existing practice include:\n\ 00934 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00935 # This is opposite to usual conventions but remains for\n\ 00936 # historical reasons. The newer PointCloud2 message has no\n\ 00937 # such problem.\n\ 00938 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00939 # (R,G,B) values packed into the least significant 24 bits,\n\ 00940 # in order.\n\ 00941 # \"intensity\" - laser or pixel intensity.\n\ 00942 # \"distance\"\n\ 00943 \n\ 00944 # The channel name should give semantics of the channel (e.g.\n\ 00945 # \"intensity\" instead of \"value\").\n\ 00946 string name\n\ 00947 \n\ 00948 # The values array should be 1-1 with the elements of the associated\n\ 00949 # PointCloud.\n\ 00950 float32[] values\n\ 00951 \n\ 00952 ================================================================================\n\ 00953 MSG: object_manipulation_msgs/SceneRegion\n\ 00954 # Point cloud\n\ 00955 sensor_msgs/PointCloud2 cloud\n\ 00956 \n\ 00957 # Indices for the region of interest\n\ 00958 int32[] mask\n\ 00959 \n\ 00960 # One of the corresponding 2D images, if applicable\n\ 00961 sensor_msgs/Image image\n\ 00962 \n\ 00963 # The disparity image, if applicable\n\ 00964 sensor_msgs/Image disparity_image\n\ 00965 \n\ 00966 # Camera info for the camera that took the image\n\ 00967 sensor_msgs/CameraInfo cam_info\n\ 00968 \n\ 00969 # a 3D region of interest for grasp planning\n\ 00970 geometry_msgs/PoseStamped roi_box_pose\n\ 00971 geometry_msgs/Vector3 roi_box_dims\n\ 00972 \n\ 00973 ================================================================================\n\ 00974 MSG: sensor_msgs/PointCloud2\n\ 00975 # This message holds a collection of N-dimensional points, which may\n\ 00976 # contain additional information such as normals, intensity, etc. The\n\ 00977 # point data is stored as a binary blob, its layout described by the\n\ 00978 # contents of the \"fields\" array.\n\ 00979 \n\ 00980 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00981 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00982 # camera depth sensors such as stereo or time-of-flight.\n\ 00983 \n\ 00984 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00985 # points).\n\ 00986 Header header\n\ 00987 \n\ 00988 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00989 # 1 and width is the length of the point cloud.\n\ 00990 uint32 height\n\ 00991 uint32 width\n\ 00992 \n\ 00993 # Describes the channels and their layout in the binary data blob.\n\ 00994 PointField[] fields\n\ 00995 \n\ 00996 bool is_bigendian # Is this data bigendian?\n\ 00997 uint32 point_step # Length of a point in bytes\n\ 00998 uint32 row_step # Length of a row in bytes\n\ 00999 uint8[] data # Actual point data, size is (row_step*height)\n\ 01000 \n\ 01001 bool is_dense # True if there are no invalid points\n\ 01002 \n\ 01003 ================================================================================\n\ 01004 MSG: sensor_msgs/PointField\n\ 01005 # This message holds the description of one point entry in the\n\ 01006 # PointCloud2 message format.\n\ 01007 uint8 INT8 = 1\n\ 01008 uint8 UINT8 = 2\n\ 01009 uint8 INT16 = 3\n\ 01010 uint8 UINT16 = 4\n\ 01011 uint8 INT32 = 5\n\ 01012 uint8 UINT32 = 6\n\ 01013 uint8 FLOAT32 = 7\n\ 01014 uint8 FLOAT64 = 8\n\ 01015 \n\ 01016 string name # Name of field\n\ 01017 uint32 offset # Offset from start of point struct\n\ 01018 uint8 datatype # Datatype enumeration, see above\n\ 01019 uint32 count # How many elements in the field\n\ 01020 \n\ 01021 ================================================================================\n\ 01022 MSG: sensor_msgs/Image\n\ 01023 # This message contains an uncompressed image\n\ 01024 # (0, 0) is at top-left corner of image\n\ 01025 #\n\ 01026 \n\ 01027 Header header # Header timestamp should be acquisition time of image\n\ 01028 # Header frame_id should be optical frame of camera\n\ 01029 # origin of frame should be optical center of cameara\n\ 01030 # +x should point to the right in the image\n\ 01031 # +y should point down in the image\n\ 01032 # +z should point into to plane of the image\n\ 01033 # If the frame_id here and the frame_id of the CameraInfo\n\ 01034 # message associated with the image conflict\n\ 01035 # the behavior is undefined\n\ 01036 \n\ 01037 uint32 height # image height, that is, number of rows\n\ 01038 uint32 width # image width, that is, number of columns\n\ 01039 \n\ 01040 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01041 # If you want to standardize a new string format, join\n\ 01042 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01043 \n\ 01044 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01045 # taken from the list of strings in src/image_encodings.cpp\n\ 01046 \n\ 01047 uint8 is_bigendian # is this data bigendian?\n\ 01048 uint32 step # Full row length in bytes\n\ 01049 uint8[] data # actual matrix data, size is (step * rows)\n\ 01050 \n\ 01051 ================================================================================\n\ 01052 MSG: sensor_msgs/CameraInfo\n\ 01053 # This message defines meta information for a camera. It should be in a\n\ 01054 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01055 # image topics named:\n\ 01056 #\n\ 01057 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01058 # image - monochrome, distorted\n\ 01059 # image_color - color, distorted\n\ 01060 # image_rect - monochrome, rectified\n\ 01061 # image_rect_color - color, rectified\n\ 01062 #\n\ 01063 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01064 # for producing the four processed image topics from image_raw and\n\ 01065 # camera_info. The meaning of the camera parameters are described in\n\ 01066 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01067 #\n\ 01068 # The image_geometry package provides a user-friendly interface to\n\ 01069 # common operations using this meta information. If you want to, e.g.,\n\ 01070 # project a 3d point into image coordinates, we strongly recommend\n\ 01071 # using image_geometry.\n\ 01072 #\n\ 01073 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01074 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01075 # indicates an uncalibrated camera.\n\ 01076 \n\ 01077 #######################################################################\n\ 01078 # Image acquisition info #\n\ 01079 #######################################################################\n\ 01080 \n\ 01081 # Time of image acquisition, camera coordinate frame ID\n\ 01082 Header header # Header timestamp should be acquisition time of image\n\ 01083 # Header frame_id should be optical frame of camera\n\ 01084 # origin of frame should be optical center of camera\n\ 01085 # +x should point to the right in the image\n\ 01086 # +y should point down in the image\n\ 01087 # +z should point into the plane of the image\n\ 01088 \n\ 01089 \n\ 01090 #######################################################################\n\ 01091 # Calibration Parameters #\n\ 01092 #######################################################################\n\ 01093 # These are fixed during camera calibration. Their values will be the #\n\ 01094 # same in all messages until the camera is recalibrated. Note that #\n\ 01095 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01096 # #\n\ 01097 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01098 # to: #\n\ 01099 # 1. An undistorted image (requires D and K) #\n\ 01100 # 2. A rectified image (requires D, K, R) #\n\ 01101 # The projection matrix P projects 3D points into the rectified image.#\n\ 01102 #######################################################################\n\ 01103 \n\ 01104 # The image dimensions with which the camera was calibrated. Normally\n\ 01105 # this will be the full camera resolution in pixels.\n\ 01106 uint32 height\n\ 01107 uint32 width\n\ 01108 \n\ 01109 # The distortion model used. Supported models are listed in\n\ 01110 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01111 # simple model of radial and tangential distortion - is sufficent.\n\ 01112 string distortion_model\n\ 01113 \n\ 01114 # The distortion parameters, size depending on the distortion model.\n\ 01115 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01116 float64[] D\n\ 01117 \n\ 01118 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01119 # [fx 0 cx]\n\ 01120 # K = [ 0 fy cy]\n\ 01121 # [ 0 0 1]\n\ 01122 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01123 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01124 # (cx, cy).\n\ 01125 float64[9] K # 3x3 row-major matrix\n\ 01126 \n\ 01127 # Rectification matrix (stereo cameras only)\n\ 01128 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01129 # stereo image plane so that epipolar lines in both stereo images are\n\ 01130 # parallel.\n\ 01131 float64[9] R # 3x3 row-major matrix\n\ 01132 \n\ 01133 # Projection/camera matrix\n\ 01134 # [fx' 0 cx' Tx]\n\ 01135 # P = [ 0 fy' cy' Ty]\n\ 01136 # [ 0 0 1 0]\n\ 01137 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01138 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01139 # is the normal camera intrinsic matrix for the rectified image.\n\ 01140 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01141 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01142 # (cx', cy') - these may differ from the values in K.\n\ 01143 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01144 # also have R = the identity and P[1:3,1:3] = K.\n\ 01145 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01146 # position of the optical center of the second camera in the first\n\ 01147 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01148 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01149 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01150 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01151 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01152 # the rectified image is given by:\n\ 01153 # [u v w]' = P * [X Y Z 1]'\n\ 01154 # x = u / w\n\ 01155 # y = v / w\n\ 01156 # This holds for both images of a stereo pair.\n\ 01157 float64[12] P # 3x4 row-major matrix\n\ 01158 \n\ 01159 \n\ 01160 #######################################################################\n\ 01161 # Operational Parameters #\n\ 01162 #######################################################################\n\ 01163 # These define the image region actually captured by the camera #\n\ 01164 # driver. Although they affect the geometry of the output image, they #\n\ 01165 # may be changed freely without recalibrating the camera. #\n\ 01166 #######################################################################\n\ 01167 \n\ 01168 # Binning refers here to any camera setting which combines rectangular\n\ 01169 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01170 # resolution of the output image to\n\ 01171 # (width / binning_x) x (height / binning_y).\n\ 01172 # The default values binning_x = binning_y = 0 is considered the same\n\ 01173 # as binning_x = binning_y = 1 (no subsampling).\n\ 01174 uint32 binning_x\n\ 01175 uint32 binning_y\n\ 01176 \n\ 01177 # Region of interest (subwindow of full camera resolution), given in\n\ 01178 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01179 # always denotes the same window of pixels on the camera sensor,\n\ 01180 # regardless of binning settings.\n\ 01181 # The default setting of roi (all values 0) is considered the same as\n\ 01182 # full resolution (roi.width = width, roi.height = height).\n\ 01183 RegionOfInterest roi\n\ 01184 \n\ 01185 ================================================================================\n\ 01186 MSG: sensor_msgs/RegionOfInterest\n\ 01187 # This message is used to specify a region of interest within an image.\n\ 01188 #\n\ 01189 # When used to specify the ROI setting of the camera when the image was\n\ 01190 # taken, the height and width fields should either match the height and\n\ 01191 # width fields for the associated image; or height = width = 0\n\ 01192 # indicates that the full resolution image was captured.\n\ 01193 \n\ 01194 uint32 x_offset # Leftmost pixel of the ROI\n\ 01195 # (0 if the ROI includes the left edge of the image)\n\ 01196 uint32 y_offset # Topmost pixel of the ROI\n\ 01197 # (0 if the ROI includes the top edge of the image)\n\ 01198 uint32 height # Height of ROI\n\ 01199 uint32 width # Width of ROI\n\ 01200 \n\ 01201 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01202 # ROI in this message. Typically this should be False if the full image\n\ 01203 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01204 # used).\n\ 01205 bool do_rectify\n\ 01206 \n\ 01207 ================================================================================\n\ 01208 MSG: geometry_msgs/Vector3\n\ 01209 # This represents a vector in free space. \n\ 01210 \n\ 01211 float64 x\n\ 01212 float64 y\n\ 01213 float64 z\n\ 01214 ================================================================================\n\ 01215 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01216 # Error codes for grasp and place planning\n\ 01217 \n\ 01218 # plan completed as expected\n\ 01219 int32 SUCCESS = 0\n\ 01220 \n\ 01221 # tf error encountered while transforming\n\ 01222 int32 TF_ERROR = 1 \n\ 01223 \n\ 01224 # some other error\n\ 01225 int32 OTHER_ERROR = 2\n\ 01226 \n\ 01227 # the actual value of this error code\n\ 01228 int32 value\n\ 01229 "; 01230 } 01231 01232 static const char* value(const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> &) { return value(); } 01233 }; 01234 01235 template<class ContainerAllocator> struct HasHeader< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > : public TrueType {}; 01236 template<class ContainerAllocator> struct HasHeader< const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > : public TrueType {}; 01237 } // namespace message_traits 01238 } // namespace ros 01239 01240 namespace ros 01241 { 01242 namespace serialization 01243 { 01244 01245 template<class ContainerAllocator> struct Serializer< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > 01246 { 01247 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01248 { 01249 stream.next(m.header); 01250 stream.next(m.status); 01251 stream.next(m.result); 01252 } 01253 01254 ROS_DECLARE_ALLINONE_SERIALIZER; 01255 }; // struct GraspAdjustActionResult_ 01256 } // namespace serialization 01257 } // namespace ros 01258 01259 namespace ros 01260 { 01261 namespace message_operations 01262 { 01263 01264 template<class ContainerAllocator> 01265 struct Printer< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> > 01266 { 01267 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> & v) 01268 { 01269 s << indent << "header: "; 01270 s << std::endl; 01271 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01272 s << indent << "status: "; 01273 s << std::endl; 01274 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status); 01275 s << indent << "result: "; 01276 s << std::endl; 01277 Printer< ::pr2_grasp_adjust::GraspAdjustResult_<ContainerAllocator> >::stream(s, indent + " ", v.result); 01278 } 01279 }; 01280 01281 01282 } // namespace message_operations 01283 } // namespace ros 01284 01285 #endif // PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTIONRESULT_H 01286