$search

Stewart Class Reference

Stewart definitions. More...

#include <stewart.h>

List of all members.

Public Member Functions

ReturnMatrix Find_Alpha ()
 Return the angular acceleration of the platform.
ReturnMatrix Find_C (const Real Gravity=GRAVITY)
 Return intermediate matrix C for the dynamics calculations.
ReturnMatrix Find_ddl ()
 Return the extension acceleration of the links in a vector.
ReturnMatrix Find_dl ()
 Return the extension rate of the links in a vector.
ReturnMatrix Find_h (const Real Gravity=GRAVITY)
 Return the intermediate matrix corresponding to the Coriolis and centrifugal + gravity force/torque components.
ReturnMatrix Find_InvJacob1 ()
 Return the first intermediate jacobian matrix (reverse) of the platform.
ReturnMatrix Find_InvJacob2 ()
 Return the second intermediate jacobian matrix (reverse) of the platform.
ReturnMatrix Find_M ()
 Return the intermediate matrix corresponding to the inertia matrix of the machine.
void Find_Mc_Nc_Gc (Matrix &Mc, Matrix &Nc, Matrix &Gc)
 Return(!) the intermediates matrix for forward dynamics with actuator dynamics.
ReturnMatrix Find_Omega ()
 Return the angular speed of the platform.
ReturnMatrix Find_wRp ()
 Return the rotation matrix wRp.
ReturnMatrix ForwardDyn (const ColumnVector Torque, const Real Gravity=GRAVITY)
 Return the acceleration vector of the platform (ddq).
ReturnMatrix ForwardDyn_AD (const ColumnVector Command, const Real t)
 Return the acceleration of the platform (Stewart platform mechanism dynamics including actuator dynamics).
ReturnMatrix ForwardKine (const ColumnVector guess_q, const ColumnVector l_given, const Real tolerance=0.001)
 Return the position vector of the platform (vector q).
ReturnMatrix get_ddq () const
 Return the acceleration of the platform.
ReturnMatrix get_dq () const
 Return the speed of the platform.
bool get_Joint () const
 Return the position of the universal joint (true if at base, false if at platform).
Real get_mp () const
 Return the mass of the platform.
ReturnMatrix get_pIp () const
 Return the inertia matrix of the platform.
ReturnMatrix get_pR () const
 Return the postion of the center of mass of the platfom.
ReturnMatrix get_q () const
 Return the position of the platform.
ReturnMatrix InvPosKine ()
 Return the lenght of the links in a vector.
ReturnMatrix jacobian ()
 Return the jacobian matrix of the platform.
ReturnMatrix jacobian_dot ()
 Return time deriative of the inverse jacobian matrix of the platform.
ReturnMatrix JointSpaceForceVct (const Real Gravity=GRAVITY)
 Return a vector containing the six actuation force components.
const Stewartoperator= (const Stewart &x)
void set_ddq (const ColumnVector _ddq)
 Set the platform's acceleration.
void set_dq (const ColumnVector _dq)
 Set the platform's speed.
void set_Joint (const bool _Joint)
 Set the position of the universal joint on the links.
void set_mp (const Real _mp)
 Set the mass of the platform.
void set_pIp (const Matrix _pIp)
 Set the inertia matrix of the platform.
void set_pR (const ColumnVector _pR)
 Set the position of the center of mass of the platform.
void set_q (const ColumnVector _q)
 Set the position of the platform.
 Stewart (const std::string &filename, const std::string &PlatformName)
 Stewart (const Stewart &x)
 Copy Constructor.
 Stewart (const Matrix InitPlat, bool Joint=true)
 Constructor.
 Stewart ()
 Default Constructor.
ReturnMatrix Torque (const Real Gravity=GRAVITY)
 Return the torque vector of the platform.
void Transform ()
 Call the functions corresponding to the basic parameters when q changes.
 ~Stewart ()
 Destructor.

Public Attributes

ColumnVector Alpha
 Angular speed of the platform.
ColumnVector ddl
 Acceleration of expension vector.
ColumnVector dl
 Rate of expension vector.
Matrix IJ1
 Inverse of the first intermediate Jacobian matrix.
Matrix IJ2
 Inverse of the second intermediate Jacobian matrix.
Matrix Jacobian
 Jacobian matrix.
ColumnVector Omega
 Angular acceleration of the platform.
Matrix wRp
 Rotation matrix describing the orientation of the platform.

Private Attributes

Real bm
 Viscous damping coefficient of the motor.
Real bs
 Viscous damping coefficient of the ballscrew.
ColumnVector ddq
 Platform acceleration.
ColumnVector dq
 Platform speed.
ColumnVector gravity
 Gravity vector.
Real Jm
 Moment of inertia (motor).
Real Js
 Moment of inertia (ballscrew).
Real Kb
 Motor back EMF.
Real Kt
 Motor torque.
Real L
 Motor Inductance.
LinkStewart Links [6]
 Platform links.
Real mp
 Platform mass.
Real n
 Gear ratio (links motor).
Real p
 Pitch of the ballscrew (links).
Matrix pIp
 Platform Inertia (local ref.).
ColumnVector pR
 Platform center of mass (in its own referential).
ColumnVector q
 Platform position (xyz + euler angles).
Real R
 Motor armature resistance.
bool UJointAtBase
 Gives the position of the universal joint (true if at base, false if at platform).

Detailed Description

Stewart definitions.

Definition at line 143 of file stewart.h.


Constructor & Destructor Documentation

Stewart::Stewart (  ) 

Default Constructor.

Definition at line 819 of file stewart.cpp.

Stewart::Stewart ( const Matrix  InitPlatt,
bool  Joint = true 
)

Constructor.

Parameters:
InitPlatt,: Platform initialization matrix.
Joint,: bool indicating where is the universal joint

Definition at line 853 of file stewart.cpp.

Stewart::Stewart ( const Stewart x  ) 

Copy Constructor.

Definition at line 974 of file stewart.cpp.

Stewart::Stewart ( const std::string &  filename,
const std::string &  PlatformName 
)
Stewart::~Stewart (  ) 

Destructor.

Definition at line 999 of file stewart.cpp.


Member Function Documentation

ReturnMatrix Stewart::Find_Alpha (  ) 

Return the angular acceleration of the platform.

Eq:

$ \alpha = \left( \begin{array}{ccc} 0 & \cos(\phi) & \cos(\theta)\sin(\phi) \\ 0 & \sin(\phi) & -\sin(\theta)\cos(\phi) \\ 1 & 0 & \cos(\theta) \end{array} \right) \left( \begin{array}{c} \ddot{\phi}\\ \ddot{\theta}\\ \ddot{\psi}\end{array} \right) + \left( \begin{array}{ccc} 0 & -\phi\sin(\phi) & \phi\cos(\phi)\sin(\theta) + \dot{\theta}\sin(\phi)\cos(\theta)\\ 0 & \phi\cos(\phi) & \phi\sin(\phi)\sin(\theta) - \dot{\theta}\cos(\phi)\cos(\theta) \\ 0 & 0 & -\dot{theta}\sin(\theta)\end{array} \right) \left( \begin{array}{c} \dot{\phi}\\ \dot{\theta}\\ \dot{\psi}\end{array} \right)$

Where:

  • $\psi,\theta, \phi$ are the three Euler angles of the platform.
  • $\dot{\psi},\dot{\theta},\dot{\phi}$ are the three Euler angle speed of the platform.
  • $\ddot{\psi},\ddot{\theta},\ddot{\phi}$ are the three Euler angle acceleration of the platform.

Definition at line 1261 of file stewart.cpp.

ReturnMatrix Stewart::Find_C ( const Real  Gravity = GRAVITY  ) 

Return intermediate matrix C for the dynamics calculations.

Eqs:

$\ddot{x}_g = \ddot{x}+\alpha\times{\bar{r}}+\omega(\omega\times{\bar{r}})$

$ \bar{r} = ^{w}R_{p}\cdot{^{p}\bar{r}}$

$ \bar{I}_p = ^wR_p^p\bar{I}_p^wR_p^T$

$C = \left( \begin{array}{c} m_pG - m_p\ddot{x}_g-\sum{F_i^n}\\ m_p\bar{r}\times{G}-m_p(\bar{r}\times{\ddot{x}_g}-\bar{I}_p\alpha+\bar{I}_p\omega\times{\omega}-\sum{a_{wi}\times{F_i^n}}-\sum{M_i}\end{array} \right)$

Where:

  • $\ddot{x}_g$ is the acceleration of the platform center of mass.
  • $\ddot{x}$ is the acceleration of the platform center (first three elements of the ddq vector).
  • $\alpha$ is the angular acceleration of the platform.
  • $\bar{r}$ is the platform center of mass in the world referential.
  • $\omega$ is the angular speed of the platform.
  • $^wR_p$ is the rotational matrix of the two referentials (world and platform).
  • $^{p}\bar{r}$ is the vector of the center of mass of the platform with reference to the local frame (platform).
  • $^p\bar{I}_p$ is the constant mass moments of inertia of the platform with reference to the local frame (platform).
  • $m_p$ is the mass of the platform.
  • G is the gravity.
  • $F_i^n$ is the normal force transferred from the platform to the link.
  • $\bar{I}_p$ is the constant mass moments of inertia of the platform in the world referential.
  • $a_{wi}$ is the position of the attachment point of each link to the platform in the world referential.
  • $M_i$ is the moment transferred from the platform to the link (not present is the spherical joint is at the platform end).

Definition at line 1512 of file stewart.cpp.

ReturnMatrix Stewart::Find_ddl (  ) 

Return the extension acceleration of the links in a vector.

Eq:

$ \ddot{l} = J^{-1}\ddot{q} + \frac{dJ^{-1}}{dt}\dot{q}$

Where:

  • $J^{-1}$ is the inverse jacobian matrix of the platform
  • $\ddot{q}$ is the ddq vector

Definition at line 1472 of file stewart.cpp.

ReturnMatrix Stewart::Find_dl (  ) 

Return the extension rate of the links in a vector.

Eq:

$\dot{l} = J^{-1}\dot{q}$

Where:

  • $J^{-1}$ is the inverse Jacobian matrix of the platform
  • $\dot{q}$ is the dq vector

Definition at line 1451 of file stewart.cpp.

ReturnMatrix Stewart::Find_h ( const Real  Gravity = GRAVITY  ) 

Return the intermediate matrix corresponding to the Coriolis and centrifugal + gravity force/torque components.

Parameters:
Gravity,: Gravity (9.81)

h is found by setting the ddq vector to zero and then calling the torque routine. The vector returned by Torque() is equal to h.

Definition at line 1646 of file stewart.cpp.

ReturnMatrix Stewart::Find_InvJacob1 (  ) 

Return the first intermediate jacobian matrix (reverse) of the platform.

Eq:

$ J_1^{-1} = \left( \begin{array}{cc} n_1^T & (a_{w1}\times{n_1})^T\\ \vdots & \vdots\\ n_6^T & (a_{w6}\times{n_6})^T\end{array} \right)$

Where:

  • $ n_1$ to $ n_6 $ are the unit vector of the links
  • $ a_{w1}$ to $a_{w6}$ are the attachment point of the links to the platform in the world referential

Definition at line 1316 of file stewart.cpp.

ReturnMatrix Stewart::Find_InvJacob2 (  ) 

Return the second intermediate jacobian matrix (reverse) of the platform.

Eq:

$ J_2^{-1} = \left( \begin{array}{cccccc} 1&0&0&0&0&0\\ 0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&\cos\phi&\sin\phi\sin\theta\\ 0&0&0&0&\sin\phi&-\cos\phi\sin\theta\\ 0&0&0&1&0&\cos\theta\end{array} \right)$

Where:

  • $\phi$ and $\theta$ are two of the euler angle of the platform (vector q)

Definition at line 1344 of file stewart.cpp.

ReturnMatrix Stewart::Find_M (  ) 

Return the intermediate matrix corresponding to the inertia matrix of the machine.

M is found by setting the dq and Gravity vectors to zero and the ddq vector to zero except for the ith element that is set to one. Then, the ith row of M is equal to the matrix returned by Torque().

Definition at line 1663 of file stewart.cpp.

void Stewart::Find_Mc_Nc_Gc ( Matrix Mc,
Matrix Nc,
Matrix Gc 
)

Return(!) the intermediates matrix for forward dynamics with actuator dynamics.

Parameters:
Mc,: Inertia matrix of the machine
Nc,: Coriolis and centrifugal force/torque component
Gc,: Gravity force/torque component

Eq:

$K_a = \frac{p}{2\pi n}I_{6\times{6}}$ $M_a = \frac{2\pi}{np}(J_s+n^2J_m)I_{6\times{6}}$ $V_a = \frac{2\pi}{np}(b_s+n^2b_m)I_{6\times{6}}$ $M_c = K_aJ^TM+M_aJ^{-1}$ $N_c = K_aJ^TN+(V_aJ^{-1}+M_a\frac{dJ^{-1}}{dt})dq$ $G_c = K_aJ^TG$ Where:

  • p is the pitch of the ballscrew.
  • n is the gear ratio.
  • $I_{6\times{6}}$ is the Identity matrix.
  • $J_s$ is the mass moment of inertia of the ballscrew.
  • $J_m$ is the mass moment of inertia of the motor.
  • $b_s$ is the viscous damping coefficient of the ballscrew.
  • $b_m$ is the viscous damping coefficient of the motor.
  • J is the Jacobian matrix of the platform.

Definition at line 1736 of file stewart.cpp.

ReturnMatrix Stewart::Find_Omega (  ) 

Return the angular speed of the platform.

Eq:

$ \omega = \left( \begin{array}{ccc} 0 & \cos(\phi) & \cos(\theta)\sin(\phi) \\ 0 & \sin(\phi) & -\sin(\theta)\cos(\phi) \\ 1 & 0 & \cos(\theta) \end{array} \right) \left( \begin{array}{c} \dot{\phi}\\ \dot{\theta}\\ \dot{\psi}\end{array} \right)$

Where:

  • $\psi,\theta, \phi$ are the three Euler angles of the platform.
  • $\dot{\psi},\dot{\theta},\dot{\phi}$ are the three Euler angle speed of the platform.

Definition at line 1223 of file stewart.cpp.

ReturnMatrix Stewart::Find_wRp (  ) 

Return the rotation matrix wRp.

Eq of the matrix:

$ wRp = \left( \begin{array}{ccc} \cos(\psi)\cos(\phi)-\cos(\theta)\sin(\phi)\sin(\psi) & -\sin(\psi)\cos(\phi)-\cos(\theta)\sin(\phi)\cos(\psi) & \sin(\theta)\sin(\phi) \\ \cos(\psi)\sin(\phi)+\cos(\theta)\cos(\phi)\sin(\psi) & -\sin(\psi)\sin(\phi)+\cos(\theta)\cos(\phi)\cos(\psi) & -\sin(\theta)\cos(\phi) \\ \sin(\psi)\sin(\theta) & \cos(\psi)\sin(\theta) & \cos(\theta) \end{array} \right)$

Where:

  • $\psi,\theta, \phi,$ are the three Euler angles of the platform.

Definition at line 1186 of file stewart.cpp.

ReturnMatrix Stewart::ForwardDyn ( const ColumnVector  T,
const Real  Gravity = GRAVITY 
)

Return the acceleration vector of the platform (ddq).

Parameters:
T,: torque vector
Gravity,: Gravity (9.81)

Eq:

$ ddq = M^{-1}(\tau-h)$

Where:

Definition at line 1701 of file stewart.cpp.

ReturnMatrix Stewart::ForwardDyn_AD ( const ColumnVector  Command,
const Real  t 
)

Return the acceleration of the platform (Stewart platform mechanism dynamics including actuator dynamics).

Parameters:
Command,: Vector of the 6 motors voltages.
t,: period of time use to find the currents (di/dt)

Voltages with back emf:

$V' = V-J^{-1}\dot{q}(\frac{2\pi}{p})K_b$

Currents:

$I = \frac{I_{6\times{6}}}{L}e^{(-R\cdot{t}/L)}V'$

Motor torque:

$\tau_m = IK_t$

Platform acceleration:

$\ddot{q} = M_c^{-1}(\tau_m - Nc - Gc)$

Where:

  • J is the Jacobian matrix of the platform.
  • $\dot{q}$ is the dq vector.
  • p is the pitch of the ballscrew.
  • $K_b$ is the motor back emf constant.
  • L is the motor armature inductance.
  • R is the motor armature resistance.
  • $K_t$ is the motor torque constant.
  • $ M_c$, $N_c$ and $G_c$ are from Find_Mc_Nc_Gc().

Definition at line 1792 of file stewart.cpp.

ReturnMatrix Stewart::ForwardKine ( const ColumnVector  guess_q,
const ColumnVector  l_given,
const Real  tolerance = 0.001 
)

Return the position vector of the platform (vector q).

Parameters:
guess_q,: Approximation of real position
l_given,: Lenght of the 6 links
tolerance,: Ending criterion

The Newton-Raphson method is used to solve the forward kinematic problem. It is a numerical iterative technic that simplify the solution. An approximation of the answer has to be guess for this method to work.

Eq:

$ q_i = q_{i-1}-J_{q_{i-1}}(l_{q_{i-1}}-l)$

Where:

  • $q_i$ is the position vector of the platform at the ith iteration.
  • $q_{i-1}$ is the position vector of the platform at the (i-1)th iteration.
  • $J_{q_{i-1}}$ is the Jacobian matrix of the platform at the position of the $q_{i-1}$ vector.
  • $l_{q_{i-1}}$ is the lenght vector of the links at the (i-1)th position of the platform.
  • l is the real lenght vector of the links.

Definition at line 1567 of file stewart.cpp.

ReturnMatrix Stewart::get_ddq (  )  const

Return the acceleration of the platform.

Definition at line 1125 of file stewart.cpp.

ReturnMatrix Stewart::get_dq (  )  const

Return the speed of the platform.

Definition at line 1119 of file stewart.cpp.

bool Stewart::get_Joint (  )  const

Return the position of the universal joint (true if at base, false if at platform).

Definition at line 1107 of file stewart.cpp.

Real Stewart::get_mp (  )  const

Return the mass of the platform.

Definition at line 1143 of file stewart.cpp.

ReturnMatrix Stewart::get_pIp (  )  const

Return the inertia matrix of the platform.

Definition at line 1137 of file stewart.cpp.

ReturnMatrix Stewart::get_pR (  )  const

Return the postion of the center of mass of the platfom.

Definition at line 1131 of file stewart.cpp.

ReturnMatrix Stewart::get_q ( void   )  const

Return the position of the platform.

Definition at line 1113 of file stewart.cpp.

ReturnMatrix Stewart::InvPosKine (  ) 

Return the lenght of the links in a vector.

The goal of the inverse kinematic is to find the lenght of each of the six links from the position of the platform (X,Y,Z,$\psi$,$\theta$,$\phi$).

Definition at line 1429 of file stewart.cpp.

ReturnMatrix Stewart::jacobian (  ) 

Return the jacobian matrix of the platform.

Eq:

$J = J_1^{-1}J_2^{-1}$

Where:

Definition at line 1290 of file stewart.cpp.

ReturnMatrix Stewart::jacobian_dot (  ) 

Return time deriative of the inverse jacobian matrix of the platform.

Eq:

$ \frac{dJ^{-1}}{dt} = \frac{dJ_1^{-1}}{dt}J_2^{-1}+J_1^{-1}\frac{dJ_2^{-1}}{dt}$

$ \frac{dJ_1^{-1}}{dt} = \left( \begin{array}{cc} (\omega_1\times{n_1})^T & ((\omega\times{a_{w1}})\times{n_1}+a_{w1}\times{(\omega_1\times{n_1})})^T\\ \vdots & \vdots\\ (\omega_6\times{n_6})^T & ((\omega\times{a_{w6}})\times{n_6}+a_{w6}\times{(\omega_6\times{n_6})})^T\end{array} \right)$

$ \frac{dJ_2^{-1}}{dt} = \left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & -\dot{\phi}\sin\phi & \dot{\phi}\cos\phi\sin\theta + \dot{\theta}\sin\phi\cos\theta\\ 0 & 0 & 0 & 0 & \dot{\phi}\cos\phi & \dot{\phi}\sin\phi\sin\theta + \dot{\theta}\cos\phi\cos\theta\\ 0 & 0 & 0 & 0 & 0 &-\dot{\theta}\sin\theta\end{array} \right)$

Where:

  • $\omega_i$ is the angular speed vector of each link
  • n is the unit vector of the link
  • $\omega$ is the angular speed vector of the platform
  • $a_{wi}$ is the position vector of the attachment point of the link to the platform
  • $\phi$ and $\theta$ are two of the Euler angle (vector q)
  • $\dot{\phi}$ and $\dot{\theta}$ are two of the Euler angle speed (vector dq)

Definition at line 1389 of file stewart.cpp.

ReturnMatrix Stewart::JointSpaceForceVct ( const Real  Gravity = GRAVITY  ) 

Return a vector containing the six actuation force components.

Parameters:
Gravity,: Gravity (9.81)

See the description of LinkStewart::ActuationForce().

Definition at line 1595 of file stewart.cpp.

const Stewart & Stewart::operator= ( const Stewart x  ) 

Overload = operator.

Definition at line 1004 of file stewart.cpp.

void Stewart::set_ddq ( const ColumnVector  _ddq  ) 

Set the platform's acceleration.

Definition at line 1066 of file stewart.cpp.

void Stewart::set_dq ( const ColumnVector  _dq  ) 

Set the platform's speed.

Definition at line 1048 of file stewart.cpp.

void Stewart::set_Joint ( const bool  _Joint  ) 

Set the position of the universal joint on the links.

Definition at line 1030 of file stewart.cpp.

void Stewart::set_mp ( const Real  _mp  ) 

Set the mass of the platform.

Definition at line 1101 of file stewart.cpp.

void Stewart::set_pIp ( const Matrix  _pIp  ) 

Set the inertia matrix of the platform.

Definition at line 1092 of file stewart.cpp.

void Stewart::set_pR ( const ColumnVector  _pR  ) 

Set the position of the center of mass of the platform.

Definition at line 1083 of file stewart.cpp.

void Stewart::set_q ( const ColumnVector  _q  ) 

Set the position of the platform.

Definition at line 1036 of file stewart.cpp.

ReturnMatrix Stewart::Torque ( const Real  Gravity = GRAVITY  ) 

Return the torque vector of the platform.

Parameters:
Gravity,: Gravity (9.81)

Eq:

$\tau = J^{-T}F$

Where:

Definition at line 1625 of file stewart.cpp.

void Stewart::Transform (  ) 

Call the functions corresponding to the basic parameters when q changes.

These functions are called by Transform:

Definition at line 1160 of file stewart.cpp.


Member Data Documentation

Angular speed of the platform.

Definition at line 171 of file stewart.h.

Real Stewart::bm [private]

Viscous damping coefficient of the motor.

Definition at line 153 of file stewart.h.

Real Stewart::bs [private]

Viscous damping coefficient of the ballscrew.

Definition at line 153 of file stewart.h.

Acceleration of expension vector.

Definition at line 171 of file stewart.h.

Platform acceleration.

Definition at line 147 of file stewart.h.

Rate of expension vector.

Definition at line 171 of file stewart.h.

Platform speed.

Definition at line 147 of file stewart.h.

Gravity vector.

Definition at line 147 of file stewart.h.

Inverse of the first intermediate Jacobian matrix.

Definition at line 167 of file stewart.h.

Inverse of the second intermediate Jacobian matrix.

Definition at line 167 of file stewart.h.

Jacobian matrix.

Definition at line 167 of file stewart.h.

Real Stewart::Jm [private]

Moment of inertia (motor).

Definition at line 153 of file stewart.h.

Real Stewart::Js [private]

Moment of inertia (ballscrew).

Definition at line 153 of file stewart.h.

Real Stewart::Kb [private]

Motor back EMF.

Definition at line 153 of file stewart.h.

Real Stewart::Kt [private]

Motor torque.

Definition at line 153 of file stewart.h.

Real Stewart::L [private]

Motor Inductance.

Definition at line 153 of file stewart.h.

Platform links.

Definition at line 164 of file stewart.h.

Real Stewart::mp [private]

Platform mass.

Definition at line 153 of file stewart.h.

Real Stewart::n [private]

Gear ratio (links motor).

Definition at line 153 of file stewart.h.

Angular acceleration of the platform.

Definition at line 171 of file stewart.h.

Real Stewart::p [private]

Pitch of the ballscrew (links).

Definition at line 153 of file stewart.h.

Matrix Stewart::pIp [private]

Platform Inertia (local ref.).

Definition at line 152 of file stewart.h.

Platform center of mass (in its own referential).

Definition at line 147 of file stewart.h.

Platform position (xyz + euler angles).

Definition at line 147 of file stewart.h.

Real Stewart::R [private]

Motor armature resistance.

Definition at line 153 of file stewart.h.

Gives the position of the universal joint (true if at base, false if at platform).

Definition at line 146 of file stewart.h.

Rotation matrix describing the orientation of the platform.

Definition at line 167 of file stewart.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines


kni
Author(s): Neuronics AG (see AUTHORS.txt); ROS wrapper by Martin Günther
autogenerated on Tue Mar 5 12:33:29 2013