$search

Robot Class Reference

DH notation robot class. More...

#include <robot.h>

Inheritance diagram for Robot:
Inheritance graph
[legend]

List of all members.

Public Member Functions

virtual ReturnMatrix C (const ColumnVector &qp)
 Joint torque due to centrifugal and Corriolis based on Recursive Newton-Euler formulation.
virtual void delta_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &dq, const ColumnVector &dqp, const ColumnVector &dqpp, ColumnVector &ltorque, ColumnVector &dtorque)
 Delta torque dynamics.
virtual void dq_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &dq, ColumnVector &torque, ColumnVector &dtorque)
 Delta torque due to delta joint position.
virtual void dqp_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &dqp, ColumnVector &torque, ColumnVector &dtorque)
 Delta torque due to delta joint velocity.
virtual ReturnMatrix dTdqi (const int i)
 Partial derivative of the robot position (homogeneous transf.).
virtual void dTdqi (Matrix &dRot, ColumnVector &dp, const int i)
 Partial derivative of the robot position (homogeneous transf.).
virtual ReturnMatrix G ()
 Joint torque due to gravity based on Recursive Newton-Euler formulation.
virtual ReturnMatrix inv_kin (const Matrix &Tobj, const int mj, const int endlink, bool &converge)
 Inverse kinematics solutions.
ReturnMatrix inv_kin (const Matrix &Tobj, const int mj=0)
 Overload inv_kin function.
virtual ReturnMatrix inv_kin_puma (const Matrix &Tobj, bool &converge)
 Analytic Puma inverse kinematics.
virtual ReturnMatrix inv_kin_rhino (const Matrix &Tobj, bool &converge)
 Analytic Rhino inverse kinematics.
virtual ReturnMatrix inv_kin_schilling (const Matrix &Tobj, bool &converge)
 Analytic Schilling inverse kinematics.
virtual ReturnMatrix jacobian (const int endlink, const int ref) const
 Jacobian of mobile links up to endlink expressed at frame ref.
virtual ReturnMatrix jacobian (const int ref=0) const
 Jacobian of mobile links expressed at frame ref.
virtual ReturnMatrix jacobian_dot (const int ref=0) const
 Jacobian derivative of mobile joints expressed at frame ref.
virtual void kine_pd (Matrix &Rot, ColumnVector &pos, ColumnVector &pos_dot, const int ref) const
 Direct kinematics with velocity.
 Robot (const std::string &filename, const std::string &robotName)
 Robot (const Robot &x)
 Copy constructor.
 Robot (const Matrix &initrobot, const Matrix &initmotor)
 Constructor.
 Robot (const Matrix &initrobot)
 Constructor.
 Robot (const int ndof=1)
 Constructor.
virtual void robotType_inv_kin ()
 Identify inverse kinematics familly.
virtual ReturnMatrix torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &Fext_, const ColumnVector &Next_)
 Joint torque based on Recursive Newton-Euler formulation.
virtual ReturnMatrix torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp)
 Joint torque, without contact force, based on Recursive Newton-Euler formulation.
virtual ReturnMatrix torque_novelocity (const ColumnVector &qpp)
 Joint torque. when joint velocity is 0, based on Recursive Newton-Euler formulation.
virtual ~Robot ()
 Destructor.

Detailed Description

DH notation robot class.

Definition at line 340 of file robot.h.


Constructor & Destructor Documentation

Robot::Robot ( const int  ndof = 1  ) 

Constructor.

Definition at line 1242 of file robot.cpp.

Robot::Robot ( const Matrix initrobot  ) 

Constructor.

Definition at line 1251 of file robot.cpp.

Robot::Robot ( const Matrix initrobot,
const Matrix initmotor 
)

Constructor.

Definition at line 1260 of file robot.cpp.

Robot::Robot ( const Robot x  ) 

Copy constructor.

Definition at line 1280 of file robot.cpp.

Robot::Robot ( const std::string &  filename,
const std::string &  robotName 
)
virtual Robot::~Robot (  )  [inline, virtual]

Destructor.

Definition at line 348 of file robot.h.


Member Function Documentation

ReturnMatrix Robot::C ( const ColumnVector qp  )  [virtual]

Joint torque due to centrifugal and Corriolis based on Recursive Newton-Euler formulation.

Implements Robot_basic.

Definition at line 360 of file dynamics.cpp.

void Robot::delta_torque ( const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector dq,
const ColumnVector dqp,
const ColumnVector dqpp,
ColumnVector ltorque,
ColumnVector dtorque 
) [virtual]

Delta torque dynamics.

This function computes

\[ \delta \tau = D(q) \delta \ddot{q} + S_1(q,\dot{q}) \delta \dot{q} + S_2(q,\dot{q},\ddot{q}) \delta q \]

Murray and Neuman Cite_: Murray86 have developed an efficient recursive linearized Newton-Euler formulation. In order to apply the RNE as presented in let us define the following variables

\[ p_{di} = \frac{\partial p_i}{\partial d_i} = \left [ \begin{array}{ccc} 0 & \sin \alpha_i & \cos \alpha_i \end{array} \right ]^T \]

\[ Q = \left [ \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right ] \]

Forward Iterations for $i=1, 2, \ldots, n$. Initialize: $\delta \omega_0 = \delta \dot{\omega}_0 = \delta \dot{v}_0 = 0$.

\[ \delta \omega_i = R_i^T \{\delta \omega_{i-1} + \sigma_i [ z_0 \delta \dot{\theta}_i - Q(\omega_{i-1} + \dot{\theta}_i ) \delta \theta_i ] \} \]

\[ \delta \dot{\omega}_i = R_i^T \{ \delta \dot{\omega}_{i-1} + \sigma_i [z_0 \delta \ddot{\theta}_i + \delta \omega_{i-1} \times (z_0 \dot{\theta}_i ) + \omega_{i-1} \times (z_0 \delta \dot{\theta}_i )] - \sigma_i Q [ \omega_{i-1} + z_0 \ddot{\theta}_i + \omega_{i-1} \times (z_0 \dot{\theta}_i )] \delta \theta_i \} \]

\[ \delta \dot{v}_i = R_i^T \{ \delta \dot{v}_{i-1} - \sigma_i Q \dot{v}_{i-1} \delta \theta_i + (1 -\sigma_i) [z_0 \delta \ddot{d}_i + 2 \delta \omega_{i-1} \times (z_0 \dot{d}_i ) + 2 \omega_{i-1} \times (z_0 \delta \dot{d}_i )] \} + \delta \dot{\omega}_i \times p_i + \delta \omega_i \times ( \omega_i \times p_i) + \omega_i \times ( \delta \omega_i \times p_i) + (1 - \sigma_i) (\dot{\omega}_i \times p_{di} + \omega_i \times ( \omega_i \times p_{di}) ) \delta d_i \]

Backward Iterations for $i=n, n-1, \ldots, 1$. Initialize: $\delta f_{n+1} = \delta n_{n+1} = 0$.

\[ \delta \dot{v}_{ci} = \delta v_i + \delta \omega_i \times r_i + \delta \omega_i \times (\omega_i \times r_i) + \omega_i \times (\delta \omega_i \times r_i) \]

\[ \delta F_i = m_i \delta \dot{v}_{ci} \]

\[ \delta N_i = I_{ci} \delta \dot{\omega}_i + \delta \omega_i \times (I_{ci} \omega_i) + \omega_i \times (I_{ci} \delta \omega_i) \]

\[ \delta f_i = R_{i+1} [ \delta f_{i+1} ] + \delta F_{i} + \sigma_{i+1} Q R_{i+1} [ f_{i+1} ] \delta \theta_{i+1} \]

\[ \delta n_i = R_{i+1} [ \delta n_{i+1} ] + \delta N_{i} + p_{i} \times \delta f_{i} + r_{i} \times \delta F_{i} + (1 - \sigma_i) (p_{di} \times f_{i}) \delta d_i + \sigma_{i+1} Q R_{i+1} [ n_{i+1} ] \delta \theta_{i+1} \]

\[ \delta \tau_i = \sigma_i [ \delta n_i^T (R_i^T z_0) - n_i^T (R_i^T Q z_0) \delta \theta_i] + (1 -\sigma_i) [ \delta f_i^T (R_i^T z_0) ] \]

Implements Robot_basic.

Definition at line 65 of file delta_t.cpp.

void Robot::dq_torque ( const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector dq,
ColumnVector ltorque,
ColumnVector dtorque 
) [virtual]

Delta torque due to delta joint position.

This function computes $S_2(q, \dot{q}, \ddot{q})\delta q$. See Robot::delta_torque for equations.

Implements Robot_basic.

Definition at line 65 of file comp_dq.cpp.

void Robot::dqp_torque ( const ColumnVector q,
const ColumnVector qp,
const ColumnVector dqp,
ColumnVector ltorque,
ColumnVector dtorque 
) [virtual]

Delta torque due to delta joint velocity.

This function computes $S_1(q, \dot{q}, \ddot{q})\delta \dot{q}$. See Robot::delta_torque for equations.

Implements Robot_basic.

Definition at line 63 of file comp_dqp.cpp.

ReturnMatrix Robot::dTdqi ( const int  i  )  [virtual]

Partial derivative of the robot position (homogeneous transf.).

See Robot::dTdqi(Matrix & dRot, ColumnVector & dp, const int i) for equations.

Implements Robot_basic.

Definition at line 334 of file kinemat.cpp.

void Robot::dTdqi ( Matrix dRot,
ColumnVector dp,
const int  i 
) [virtual]

Partial derivative of the robot position (homogeneous transf.).

This function computes the partial derivatives:

\[ \frac{\partial{}^0 T_n}{\partial q_i} = {}^0 T_{i-1} Q_i \; {}^{i-1} T_n \]

in standard notation and

\[ \frac{\partial{}^0 T_n}{\partial q_i} = {}^0 T_{i} Q_i \; {}^{i} T_n \]

in modified notation,

with

\[ Q_i = \left [ \begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right ] \]

for a revolute joint and

\[ Q_i = \left [ \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right ] \]

for a prismatic joint.

$dRot$ and $dp$ are modified on output.

Implements Robot_basic.

Definition at line 249 of file kinemat.cpp.

ReturnMatrix Robot::G (  )  [virtual]

Joint torque due to gravity based on Recursive Newton-Euler formulation.

Implements Robot_basic.

Definition at line 321 of file dynamics.cpp.

ReturnMatrix Robot::inv_kin ( const Matrix Tobj,
const int  mj,
const int  endlink,
bool converge 
) [virtual]

Inverse kinematics solutions.

The solution is based on the analytic inverse kinematics if robot type (familly) is Rhino or Puma, otherwise used the numerical algoritm defined in Robot_basic class.

Reimplemented from Robot_basic.

Definition at line 226 of file invkine.cpp.

ReturnMatrix Robot::inv_kin ( const Matrix Tobj,
const int  mj = 0 
) [virtual]

Overload inv_kin function.

Reimplemented from Robot_basic.

Definition at line 218 of file invkine.cpp.

ReturnMatrix Robot::inv_kin_puma ( const Matrix Tobj,
bool converge 
) [virtual]

Analytic Puma inverse kinematics.

converge will be false if the desired end effector pose is outside robot range.

Implements Robot_basic.

Definition at line 348 of file invkine.cpp.

ReturnMatrix Robot::inv_kin_rhino ( const Matrix Tobj,
bool converge 
) [virtual]

Analytic Rhino inverse kinematics.

converge will be false if the desired end effector pose is outside robot range.

Implements Robot_basic.

Definition at line 251 of file invkine.cpp.

ReturnMatrix Robot::inv_kin_schilling ( const Matrix Tobj,
bool converge 
) [virtual]

Analytic Schilling inverse kinematics.

converge will be false if the desired end effector pose is outside robot range.

Implements Robot_basic.

Definition at line 508 of file invkine.cpp.

ReturnMatrix Robot::jacobian ( const int  endlink,
const int  ref 
) const [virtual]

Jacobian of mobile links up to endlink expressed at frame ref.

The Jacobian expressed in based frame is

\[ ^{0}J(q) = \left[ \begin{array}{cccc} ^{0}J_1(q) & ^{0}J_2(q) & \cdots & ^{0}J_n(q) \\ \end{array} \right] \]

where $^{0}J_i(q)$ is defined by

\[ ^{0}J_i(q) = \begin{array}{cc} \left[ \begin{array}{c} z_i \times ^{i}p_n \\ z_i \\ \end{array} \right] & \textrm{rotoid joint} \end{array} \]

\[ ^{0}J_i(q) = \begin{array}{cc} \left[ \begin{array}{c} z_i \\ 0 \\ \end{array} \right] & \textrm{prismatic joint} \\ \end{array} \]

Expressed in a different frame the Jacobian is obtained by

\[ ^{i}J(q) = \left[ \begin{array}{cc} ^{0}_iR^T & 0 \\ 0 & ^{0}_iR^T \end{array} \right] {^{0}}J(q) \]

Implements Robot_basic.

Definition at line 352 of file kinemat.cpp.

virtual ReturnMatrix Robot::jacobian ( const int  ref = 0  )  const [inline, virtual]

Jacobian of mobile links expressed at frame ref.

Reimplemented from Robot_basic.

Definition at line 357 of file robot.h.

ReturnMatrix Robot::jacobian_dot ( const int  ref = 0  )  const [virtual]

Jacobian derivative of mobile joints expressed at frame ref.

The Jacobian derivative expressed in based frame is

\[ ^{0}\dot{J}(q,\dot{q}) = \left[ \begin{array}{cccc} ^{0}\dot{J}_1(q,\dot{q}) & ^{0}\dot{J}_2(q,\dot{q}) & \cdots & ^{0}\dot{J}_n(q,\dot{q}) \\ \end{array} \right] \]

where $^{0}\dot{J}_i(q,\dot{q})$ is defined by

\[ ^{0}\dot{J}_i(q,\dot{q}) = \begin{array}{cc} \left[ \begin{array}{c} \omega_{i-1} \times z_i \\ \omega_{i-1} \times ^{i-1}p_n + z_i \times ^{i-1}\dot{p}_n \end{array} \right] & \textrm{rotoid joint} \end{array} \]

\[ ^{0}\dot{J}_i(q,\dot{q}) = \begin{array}{cc} \left[ \begin{array}{c} 0 \\ 0 \\ \end{array} \right] & \textrm{prismatic joint} \\ \end{array} \]

Expressed in a different frame the Jacobian derivative is obtained by

\[ ^{i}J(q) = \left[ \begin{array}{cc} ^{0}_iR^T & 0 \\ 0 & ^{0}_iR^T \end{array} \right] {^{0}}J(q) \]

Implements Robot_basic.

Definition at line 449 of file kinemat.cpp.

void Robot::kine_pd ( Matrix Rot,
ColumnVector pos,
ColumnVector pos_dot,
const int  j 
) const [virtual]

Direct kinematics with velocity.

Parameters:
Rot,: Frame j rotation matrix w.r.t to the base frame.
pos,: Frame j position vector wr.r.t to the base frame.
pos_dot,: Frame j velocity vector w.r.t to the base frame.
j,: Frame j. Print an error on the console if j is out of range.

Implements Robot_basic.

Definition at line 219 of file kinemat.cpp.

void Robot::robotType_inv_kin (  )  [virtual]

Identify inverse kinematics familly.

Identify the inverse kinematics analytic solution based on the similarity of the robot DH parameters and the DH parameters of know robots (ex: Puma, Rhino, ...). The inverse kinematics will be based on a numerical alogorithm if there is no match .

Implements Robot_basic.

Definition at line 1284 of file robot.cpp.

ReturnMatrix Robot::torque ( const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector Fext,
const ColumnVector Next 
) [virtual]

Joint torque based on Recursive Newton-Euler formulation.

In order to apply the RNE as presented in Murray 86, let us define the following variables (referenced in the $i^{th}$ coordinate frame if applicable):

$\sigma_i$ is the joint type; $\sigma_i = 1$ for a revolute joint and $\sigma_i = 0$ for a prismatic joint.

$ z_0 = \left [ \begin{array}{ccc} 0 & 0 & 1 \end{array} \right ]^T$

$p_i = \left [ \begin{array}{ccc} a_i & d_i \sin \alpha_i & d_i \cos \alpha_i \end{array} \right ]^T$ is the position of the $i^{th}$ with respect to the $i-1^{th}$ frame.

Forward Iterations for $i=1, 2, \ldots, n$. Initialize: $\omega_0 = \dot{\omega}_0 = 0$ and $\dot{v}_0 = - g$.

\[ \omega_i = R_i^T [\omega_{i-1} + \sigma_i z_0 \dot{\theta}_i ] \]

\[ \dot{\omega}_i = R_i^T \{ \dot{\omega}_{i-1} + \sigma_i [z_0 \ddot{\theta}_i + \omega_{i-1} \times (z_0 \dot{\theta}_i )] \} \]

\[ \dot{v}_i = R_i^T \{ \dot{v}_{i-1} + (1 -\sigma_i) [z_0 \ddot{d}_i + 2 \omega_{i-1} \times (z_0 \dot{d}_i )] \} + \dot{\omega}_i \times p_i + \omega_i \times ( \omega_i \times p_i) \]

Backward Iterations for $i=n, n-1, \ldots, 1$. Initialize: $f_{n+1} = n_{n+1} = 0$.

\[ \dot{v}_{ci} = v_i + \omega_i \times r_i + \omega_i \times (\omega_i \times r_i) \]

\[ F_i = m_i \dot{v}_{ci} \]

\[ N_i = I_{ci} \dot{\omega}_i + \omega_i \times (I_{ci} \omega_i) \]

\[ f_i = R_{i+1} [ f_{i+1} ] + F_{i} \]

\[ n_i = R_{i+1} [ n_{i+1} ] + p_{i} \times f_{i} + N_{i} + r_{i} \times F_{i} \]

\[ \tau_i = \sigma_i n_i^T (R_i^T z_0) + (1 - \sigma_i) f_i^T (R_i^T z_0) \]

Implements Robot_basic.

Definition at line 148 of file dynamics.cpp.

ReturnMatrix Robot::torque ( const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp 
) [virtual]

Joint torque, without contact force, based on Recursive Newton-Euler formulation.

Implements Robot_basic.

Definition at line 135 of file dynamics.cpp.

ReturnMatrix Robot::torque_novelocity ( const ColumnVector qpp  )  [virtual]

Joint torque. when joint velocity is 0, based on Recursive Newton-Euler formulation.

Implements Robot_basic.

Definition at line 272 of file dynamics.cpp.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines


kni
Author(s): Neuronics AG (see AUTHORS.txt); ROS wrapper by Martin Günther
autogenerated on Tue Mar 5 12:33:28 2013