examples
easyPoint2KalmanFilter.cpp
Go to the documentation of this file.
1
/* ----------------------------------------------------------------------------
2
3
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
4
* Atlanta, Georgia 30332-0415
5
* All Rights Reserved
6
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7
8
* See LICENSE for the license information
9
10
* -------------------------------------------------------------------------- */
11
24
#include <
gtsam/nonlinear/ExtendedKalmanFilter.h
>
25
#include <
gtsam/inference/Symbol.h
>
26
#include <
gtsam/nonlinear/PriorFactor.h
>
27
#include <
gtsam/slam/BetweenFactor.h
>
28
#include <
gtsam/geometry/Point2.h
>
29
30
using namespace
std
;
31
using namespace
gtsam
;
32
33
// Define Types for Linear System Test
34
typedef
Point2
LinearMeasurement
;
35
36
int
main
() {
37
38
// Create the Kalman Filter initialization point
39
Point2
x_initial(0.0, 0.0);
40
SharedDiagonal
P_initial = noiseModel::Diagonal::Sigmas(
Vector2
(0.1, 0.1));
41
42
// Create Key for initial pose
43
Symbol
x0
(
'x'
,0);
44
45
// Create an ExtendedKalmanFilter object
46
ExtendedKalmanFilter<Point2>
ekf(
x0
, x_initial, P_initial);
47
48
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
49
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
50
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
51
// Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
52
// where F is the state transition model/matrix, B is the control input model,
53
// and w is zero-mean, Gaussian white noise with covariance Q
54
// Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
55
// physical property, such as velocity or acceleration, and G is derived from physics
56
//
57
// For the purposes of this example, let us assume we are using a constant-position model and
58
// the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
59
// and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1].
60
Vector
u =
Vector2
(1.0, 0.0);
61
SharedDiagonal
Q
= noiseModel::Diagonal::Sigmas(
Vector2
(0.1, 0.1),
true
);
62
63
// This simple motion can be modeled with a BetweenFactor
64
// Create Key for next pose
65
Symbol
x1
(
'x'
,1);
66
// Predict delta based on controls
67
Point2
difference(1,0);
68
// Create Factor
69
BetweenFactor<Point2>
factor1
(
x0
,
x1
, difference,
Q
);
70
71
// Predict the new value with the EKF class
72
Point2
x1_predict = ekf.
predict
(
factor1
);
73
traits<Point2>::Print
(x1_predict,
"X1 Predict"
);
74
75
76
77
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
78
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1)
79
// For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t}
80
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
81
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
82
//
83
// For the purposes of this example, let us assume we have something like a GPS that returns
84
// the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise
85
// R = [0.25 0 ; 0 0.25].
86
SharedDiagonal
R
= noiseModel::Diagonal::Sigmas(
Vector2
(0.25, 0.25),
true
);
87
88
// This simple measurement can be modeled with a PriorFactor
89
Point2
z1
(1.0, 0.0);
90
PriorFactor<Point2>
factor2
(
x1
,
z1
,
R
);
91
92
// Update the Kalman Filter with the measurement
93
Point2
x1_update = ekf.
update
(
factor2
);
94
traits<Point2>::Print
(x1_update,
"X1 Update"
);
95
96
97
98
// Do the same thing two more times...
99
// Predict
100
Symbol
x2
(
'x'
,2);
101
difference =
Point2
(1,0);
102
BetweenFactor<Point2>
factor3
(
x1
,
x2
, difference,
Q
);
103
Point2
x2_predict = ekf.
predict
(
factor1
);
104
traits<Point2>::Print
(x2_predict,
"X2 Predict"
);
105
106
// Update
107
Point2
z2
(2.0, 0.0);
108
PriorFactor<Point2>
factor4(
x2
,
z2
,
R
);
109
Point2
x2_update = ekf.
update
(factor4);
110
traits<Point2>::Print
(x2_update,
"X2 Update"
);
111
112
113
114
// Do the same thing one more time...
115
// Predict
116
Symbol
x3
(
'x'
,3);
117
difference =
Point2
(1,0);
118
BetweenFactor<Point2>
factor5(
x2
,
x3
, difference,
Q
);
119
Point2
x3_predict = ekf.
predict
(factor5);
120
traits<Point2>::Print
(x3_predict,
"X3 Predict"
);
121
122
// Update
123
Point2
z3
(3.0, 0.0);
124
PriorFactor<Point2>
factor6(
x3
,
z3
,
R
);
125
Point2
x3_update = ekf.
update
(factor6);
126
traits<Point2>::Print
(x3_update,
"X3 Update"
);
127
128
return
0;
129
}
main
int main()
Definition:
easyPoint2KalmanFilter.cpp:36
simple_graph::factor2
auto factor2
Definition:
testJacobianFactor.cpp:203
gtsam::Vector2
Eigen::Vector2d Vector2
Definition:
Vector.h:43
z1
Point2 z1
Definition:
testTriangulationFactor.cpp:45
gtsam::PriorFactor
Definition:
nonlinear/PriorFactor.h:30
gtsam::ExtendedKalmanFilter
Definition:
ExtendedKalmanFilter.h:45
gtsam::Vector
Eigen::VectorXd Vector
Definition:
Vector.h:39
x3
Pose3 x3(Rot3::Ypr(M_PI/4.0, 0.0, 0.0), l2)
Point2.h
2D Point
PriorFactor.h
z3
static const Unit3 z3
Definition:
testRotateFactor.cpp:44
gtsam::ExtendedKalmanFilter::update
T update(const NoiseModelFactor &measurementFactor)
Definition:
ExtendedKalmanFilter-inl.h:106
BetweenFactor.h
x1
Pose3 x1
Definition:
testPose3.cpp:663
gtsam::SharedDiagonal
noiseModel::Diagonal::shared_ptr SharedDiagonal
Definition:
NoiseModel.h:764
x0
static Symbol x0('x', 0)
Symbol.h
gtsam::Point2
Vector2 Point2
Definition:
Point2.h:32
gtsam::ExtendedKalmanFilter::predict
T predict(const NoiseModelFactor &motionFactor)
Definition:
ExtendedKalmanFilter-inl.h:81
ExtendedKalmanFilter.h
Class to perform generic Kalman Filtering using nonlinear factor graphs.
simple_graph::factor3
auto factor3
Definition:
testJacobianFactor.cpp:210
Eigen::Quaternion
The quaternion class used to represent 3D orientations and rotations.
Definition:
ForwardDeclarations.h:293
gtsam
traits
Definition:
SFMdata.h:40
std
Definition:
BFloat16.h:88
gtsam::Print
void Print(const CONTAINER &keys, const string &s, const KeyFormatter &keyFormatter)
Definition:
Key.cpp:65
LinearMeasurement
Point2 LinearMeasurement
Definition:
easyPoint2KalmanFilter.cpp:34
x2
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
R
Rot2 R(Rot2::fromAngle(0.1))
simple_graph::factor1
auto factor1
Definition:
testJacobianFactor.cpp:196
z2
static const Unit3 z2
Definition:
testRotateFactor.cpp:43
gtsam::Symbol
Definition:
inference/Symbol.h:37
gtsam::BetweenFactor
Definition:
BetweenFactor.h:40
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:02:12