LinearizedFactor.cpp
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------------
2 
3  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4  * Atlanta, Georgia 30332-0415
5  * All Rights Reserved
6  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7 
8  * See LICENSE for the license information
9 
10  * -------------------------------------------------------------------------- */
11 
19 #include <iostream>
20 #include <cassert>
21 
22 namespace gtsam {
23 
24 /* ************************************************************************* */
26  const GaussianFactor::shared_ptr& gaussian, const Values& lin_points)
27 : NonlinearFactor(gaussian->keys())
28 {
29  // Extract the keys and linearization points
30  for(const Key& key: gaussian->keys()) {
31  // extract linearization point
32  assert(lin_points.exists(key));
33  this->lin_points_.insert(key, lin_points.at(key));
34  }
35 }
36 
37 /* ************************************************************************* */
38 // LinearizedJacobianFactor
39 /* ************************************************************************* */
41 }
42 
43 /* ************************************************************************* */
45  const JacobianFactor::shared_ptr& jacobian, const Values& lin_points)
46 : Base(jacobian, lin_points) {
47 
48  // Create the dims array
49  size_t *dims = (size_t *)alloca(sizeof(size_t) * (jacobian->size() + 1));
50  size_t index = 0;
51  for(JacobianFactor::const_iterator iter = jacobian->begin(); iter != jacobian->end(); ++iter) {
52  dims[index++] = jacobian->getDim(iter);
53  }
54  dims[index] = 1;
55 
56  // Update the BlockInfo accessor
57  Ab_ = VerticalBlockMatrix(dims, dims+jacobian->size()+1, jacobian->rows());
58  // Get the Ab matrix from the Jacobian factor, with any covariance baked in
59  Ab_.matrix() = jacobian->augmentedJacobian();
60 }
61 
62 /* ************************************************************************* */
63 void LinearizedJacobianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
64 
65  std::cout << s << std::endl;
66 
67  std::cout << "Nonlinear Keys: ";
68  for(const Key& key: this->keys())
69  std::cout << keyFormatter(key) << " ";
70  std::cout << std::endl;
71 
72  for(const_iterator key=begin(); key!=end(); ++key) {
73  std::cout << "A[" << keyFormatter(*key) << "]=\n" << A(*key) << std::endl;
74  }
75  std::cout << "b=\n" << b() << std::endl;
76 
77  lin_points_.print("Linearization Point: ");
78 }
79 
80 /* ************************************************************************* */
82 
83  const This *e = dynamic_cast<const This*> (&expected);
84  if (e) {
85 
86  Matrix thisMatrix = this->Ab_.range(0, Ab_.nBlocks());
87  Matrix rhsMatrix = e->Ab_.range(0, Ab_.nBlocks());
88 
89  return Base::equals(expected, tol)
90  && lin_points_.equals(e->lin_points_, tol)
91  && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
92  } else {
93  return false;
94  }
95 }
96 
97 /* ************************************************************************* */
99  Vector errorVector = error_vector(c);
100  return 0.5 * errorVector.dot(errorVector);
101 }
102 
103 /* ************************************************************************* */
104 std::shared_ptr<GaussianFactor>
106 
107  // Create the 'terms' data structure for the Jacobian constructor
108  std::vector<std::pair<Key, Matrix> > terms;
109  for(Key key: keys()) {
110  terms.push_back(std::make_pair(key, this->A(key)));
111  }
112 
113  // compute rhs
114  Vector b = -error_vector(c);
115 
116  return std::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b, noiseModel::Unit::Create(dim())));
117 }
118 
119 /* ************************************************************************* */
121 
122  Vector errorVector = -b();
123 
124  for(Key key: this->keys()) {
125  const Value& newPt = c.at(key);
126  const Value& linPt = lin_points_.at(key);
127  Vector d = linPt.localCoordinates_(newPt);
128  const constABlock A = this->A(key);
129  errorVector += A * d;
130  }
131 
132  return errorVector;
133 }
134 
135 /* ************************************************************************* */
136 // LinearizedHessianFactor
137 /* ************************************************************************* */
139 }
140 
141 /* ************************************************************************* */
143  const HessianFactor::shared_ptr& hessian, const Values& lin_points)
144  : Base(hessian, lin_points), info_(hessian->info()) {}
145 
146 /* ************************************************************************* */
147 void LinearizedHessianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
148 
149  std::cout << s << std::endl;
150 
151  std::cout << "Nonlinear Keys: ";
152  for(const Key& key: this->keys())
153  std::cout << keyFormatter(key) << " ";
154  std::cout << std::endl;
155 
156  gtsam::print(Matrix(info_.selfadjointView()), "Ab^T * Ab: ");
157 
158  lin_points_.print("Linearization Point: ");
159 }
160 
161 /* ************************************************************************* */
163 
164  const This *e = dynamic_cast<const This*> (&expected);
165  if (e) {
166 
167  Matrix thisMatrix = this->info_.selfadjointView();
168  thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0;
169  Matrix rhsMatrix = e->info_.selfadjointView();
170  rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0;
171 
172  return Base::equals(expected, tol)
173  && lin_points_.equals(e->lin_points_, tol)
174  && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
175  } else {
176  return false;
177  }
178 }
179 
180 /* ************************************************************************* */
182 
183  // Construct an error vector in key-order from the Values
184  Vector dx = Vector::Zero(dim());
185  size_t index = 0;
186  for(unsigned int i = 0; i < this->size(); ++i){
187  Key key = this->keys()[i];
188  const Value& newPt = c.at(key);
189  const Value& linPt = lin_points_.at(key);
190  dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
191  index += linPt.dim();
192  }
193 
194  // error 0.5*(f - 2*x'*g + x'*G*x)
195  double f = constantTerm();
196  double xtg = dx.dot(linearTerm());
197  double xGx = dx.transpose() * squaredTerm() * dx;
198 
199  return 0.5 * (f - 2.0 * xtg + xGx);
200 }
201 
202 /* ************************************************************************* */
203 std::shared_ptr<GaussianFactor>
205 
206  // Construct an error vector in key-order from the Values
207  Vector dx = Vector::Zero(dim());
208  size_t index = 0;
209  for(unsigned int i = 0; i < this->size(); ++i){
210  Key key = this->keys()[i];
211  const Value& newPt = c.at(key);
212  const Value& linPt = lin_points_.at(key);
213  dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
214  index += linPt.dim();
215  }
216 
217  // f2 = f1 - 2*dx'*g1 + dx'*G1*dx
218  //newInfo(this->size(), this->size())(0,0) += -2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
219  double f = constantTerm() - 2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm() * dx;
220 
221  // g2 = g1 - G1*dx
222  //newInfo.rangeColumn(0, this->size(), this->size(), 0) -= squaredTerm().selfadjointView<Eigen::Upper>() * dx;
223  Vector g = linearTerm() - squaredTerm() * dx;
224  std::vector<Vector> gs;
225  std::size_t offset = 0;
226  for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
227  const std::size_t dim = info_.getDim(i);
228  gs.push_back(g.segment(offset, dim));
229  offset += dim;
230  }
231 
232  // G2 = G1
233  // Do Nothing
234  std::vector<Matrix> Gs;
235  for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
236  Gs.push_back(info_.diagonalBlock(i));
237  for(DenseIndex j = i + 1; j < info_.nBlocks()-1; ++j) {
238  Gs.push_back(info_.aboveDiagonalBlock(i, j));
239  }
240  }
241 
242  // Create a Hessian Factor from the modified info matrix
243  //return std::shared_ptr<GaussianFactor>(new HessianFactor(js, newInfo));
244  return std::shared_ptr<GaussianFactor>(new HessianFactor(keys(), Gs, gs, f));
245 }
246 
247 } // \namespace aspn
gtsam::Values::exists
bool exists(Key j) const
Definition: Values.cpp:94
Eigen::Block
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
gtsam::HessianFactor
A Gaussian factor using the canonical parameters (information form)
Definition: HessianFactor.h:99
s
RealScalar s
Definition: level1_cplx_impl.h:126
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
d
static const double d[K][N]
Definition: igam.h:11
gtsam::LinearizedHessianFactor::info_
SymmetricBlockMatrix info_
Definition: LinearizedFactor.h:191
keys
const KeyVector keys
Definition: testRegularImplicitSchurFactor.cpp:40
c
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
gtsam::JacobianFactor
Definition: JacobianFactor.h:91
gtsam::NonlinearFactor::equals
virtual bool equals(const NonlinearFactor &f, double tol=1e-9) const
Definition: NonlinearFactor.cpp:47
gtsam::LinearizedHessianFactor::dim
size_t dim() const override
Definition: LinearizedFactor.h:268
gtsam::VerticalBlockMatrix::range
Block range(DenseIndex startBlock, DenseIndex endBlock)
Definition: VerticalBlockMatrix.h:132
gtsam::equal_with_abs_tol
bool equal_with_abs_tol(const Eigen::DenseBase< MATRIX > &A, const Eigen::DenseBase< MATRIX > &B, double tol=1e-9)
Definition: base/Matrix.h:80
gtsam::SymmetricBlockMatrix::selfadjointView
Eigen::SelfAdjointView< constBlock, Eigen::Upper > selfadjointView(DenseIndex I, DenseIndex J) const
Return the square sub-matrix that contains blocks(i:j, i:j).
Definition: SymmetricBlockMatrix.h:158
gtsam::Value::dim
virtual size_t dim() const =0
gtsam::Matrix
Eigen::MatrixXd Matrix
Definition: base/Matrix.h:39
gtsam::HessianFactor::shared_ptr
std::shared_ptr< This > shared_ptr
A shared_ptr to this class.
Definition: HessianFactor.h:108
gtsam::Factor
Definition: Factor.h:70
gtsam::LinearizedJacobianFactor::print
void print(const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
Definition: LinearizedFactor.cpp:63
gtsam::Factor::begin
const_iterator begin() const
Definition: Factor.h:146
gtsam::LinearizedJacobianFactor::dim
size_t dim() const override
Definition: LinearizedFactor.h:135
gtsam::Vector
Eigen::VectorXd Vector
Definition: Vector.h:39
gtsam::LinearizedHessianFactor::error
double error(const Values &c) const override
Definition: LinearizedFactor.cpp:181
gtsam::Value::localCoordinates_
virtual Vector localCoordinates_(const Value &value) const =0
gtsam::Values::at
const ValueType at(Key j) const
Definition: Values-inl.h:261
gtsam::print
void print(const Matrix &A, const string &s, ostream &stream)
Definition: Matrix.cpp:156
A
Definition: test_numpy_dtypes.cpp:298
gtsam::LinearizedJacobianFactor::Ab_
VerticalBlockMatrix Ab_
Definition: LinearizedFactor.h:101
gtsam::LinearizedGaussianFactor::LinearizedGaussianFactor
LinearizedGaussianFactor()=default
gtsam::VerticalBlockMatrix
Definition: VerticalBlockMatrix.h:44
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
gtsam::LinearizedHessianFactor::LinearizedHessianFactor
LinearizedHessianFactor()
Definition: LinearizedFactor.cpp:138
gtsam::KeyFormatter
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
gtsam::LinearizedHessianFactor::squaredTerm
Eigen::SelfAdjointView< constBlock, Eigen::Upper > squaredTerm() const
Definition: LinearizedFactor.h:263
gtsam::LinearizedJacobianFactor::error_vector
Vector error_vector(const Values &c) const
Definition: LinearizedFactor.cpp:120
gtsam::GaussianFactor::shared_ptr
std::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: GaussianFactor.h:42
gtsam::LinearizedJacobianFactor::linearize
std::shared_ptr< GaussianFactor > linearize(const Values &c) const override
Definition: LinearizedFactor.cpp:105
gtsam::noiseModel::Unit::Create
static shared_ptr Create(size_t dim)
Definition: NoiseModel.h:631
gtsam::Value
Definition: Value.h:39
cholesky::expected
Matrix expected
Definition: testMatrix.cpp:971
gtsam::LinearizedJacobianFactor::LinearizedJacobianFactor
LinearizedJacobianFactor()
Definition: LinearizedFactor.cpp:40
gtsam::Values::equals
bool equals(const Values &other, double tol=1e-9) const
Definition: Values.cpp:78
info
else if n * info
Definition: 3rdparty/Eigen/lapack/cholesky.cpp:18
gtsam::VerticalBlockMatrix::nBlocks
DenseIndex nBlocks() const
Block count.
Definition: VerticalBlockMatrix.h:123
gtsam::SymmetricBlockMatrix::nBlocks
DenseIndex nBlocks() const
Block count.
Definition: SymmetricBlockMatrix.h:122
gtsam::LinearizedHessianFactor::linearTerm
constColumn linearTerm() const
Definition: LinearizedFactor.h:239
gtsam::Factor::end
const_iterator end() const
Definition: Factor.h:149
size_t
std::size_t size_t
Definition: wrap/pybind11/include/pybind11/detail/common.h:490
g
void g(const string &key, int i)
Definition: testBTree.cpp:41
offset
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate offset
Definition: gnuplot_common_settings.hh:64
key
const gtsam::Symbol key('X', 0)
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition: testExpression.cpp:218
gtsam::LinearizedJacobianFactor::error
double error(const Values &c) const override
Definition: LinearizedFactor.cpp:98
gtsam::LinearizedJacobianFactor::b
const constBVector b() const
Definition: LinearizedFactor.h:130
gtsam::Factor::const_iterator
KeyVector::const_iterator const_iterator
Const iterator over keys.
Definition: Factor.h:83
gtsam::Values::print
void print(const std::string &str="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
Definition: Values.cpp:67
gtsam
traits
Definition: SFMdata.h:40
gtsam::LinearizedHessianFactor::print
void print(const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
Definition: LinearizedFactor.cpp:147
gtsam::Values
Definition: Values.h:65
gtsam::Factor::keys
const KeyVector & keys() const
Access the factor's involved variable keys.
Definition: Factor.h:143
iter
iterator iter(handle obj)
Definition: pytypes.h:2475
gtsam::DenseIndex
ptrdiff_t DenseIndex
The index type for Eigen objects.
Definition: types.h:103
gtsam::VerticalBlockMatrix::matrix
const Matrix & matrix() const
Definition: VerticalBlockMatrix.h:190
gtsam::NonlinearFactor
Definition: NonlinearFactor.h:69
gtsam::SymmetricBlockMatrix::diagonalBlock
Eigen::SelfAdjointView< Block, Eigen::Upper > diagonalBlock(DenseIndex J)
Return the J'th diagonal block as a self adjoint view.
Definition: SymmetricBlockMatrix.h:137
gtsam::Values::insert
void insert(Key j, const Value &val)
Definition: Values.cpp:156
gtsam::LinearizedHessianFactor::constantTerm
double constantTerm() const
Definition: LinearizedFactor.h:224
gtsam::LinearizedJacobianFactor::A
const constABlock A() const
Definition: LinearizedFactor.h:131
gtsam::LinearizedHessianFactor::equals
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
Definition: LinearizedFactor.cpp:162
gtsam::tol
const G double tol
Definition: Group.h:79
gtsam::JacobianFactor::shared_ptr
std::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: JacobianFactor.h:97
gtsam::SymmetricBlockMatrix::getDim
DenseIndex getDim(DenseIndex block) const
Number of dimensions for variable on this diagonal block.
Definition: SymmetricBlockMatrix.h:125
gtsam::LinearizedHessianFactor::linearize
std::shared_ptr< GaussianFactor > linearize(const Values &c) const override
Definition: LinearizedFactor.cpp:204
gtsam::LinearizedGaussianFactor::lin_points_
Values lin_points_
Definition: LinearizedFactor.h:43
gtsam::SymmetricBlockMatrix::aboveDiagonalBlock
constBlock aboveDiagonalBlock(DenseIndex I, DenseIndex J) const
Get block above the diagonal (I, J).
Definition: SymmetricBlockMatrix.h:152
gtsam::Factor::size
size_t size() const
Definition: Factor.h:160
gtsam::Key
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:97
gtsam::LinearizedJacobianFactor::equals
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
Definition: LinearizedFactor.cpp:81
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
LinearizedFactor.h
A dummy factor that allows a linear factor to act as a nonlinear factor.


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:02:38