tmtg.cpp
Go to the documentation of this file.
1 
6 
7 
8 //#define WANT_STREAM
9 
10 #define WANT_MATH // for sqrt
11 
12 #include "include.h"
13 
14 #include "newmatap.h"
15 
16 #include "tmt.h"
17 
18 #ifdef use_namespace
19 using namespace NEWMAT;
20 #endif
21 
22 
23 
24 void trymatg()
25 {
26 // cout << "\nSixteenth test of Matrix package\n";
27 // cout << "\n";
28  Tracer et("Sixteenth test of Matrix package");
30 
31  int i,j;
32  Matrix M(4,7);
33  for (i=1; i<=4; i++) for (j=1; j<=7; j++) M(i,j) = 100 * i + j;
34  ColumnVector CV = M.AsColumn();
35  {
36  Tracer et1("Stage 1");
37  RowVector test(7);
38  test(1) = SumSquare(M);
39  test(2) = SumSquare(CV);
40  test(3) = SumSquare(CV.t());
41  test(4) = SumSquare(CV.AsDiagonal());
42  test(5) = SumSquare(M.AsColumn());
43  test(6) = Matrix(CV.t()*CV)(1,1);
44  test(7) = (CV.t()*CV).AsScalar();
45  test = test - 2156560.0; Print(test);
46  }
47 
49  for (i=1; i<=6; i++) for (j=i; j<=6; j++) U(i,j) = i + (i-j) * (i-j);
50  M = U; DiagonalMatrix D; D << U;
51  LowerTriangularMatrix L = U.t(); SymmetricMatrix S; S << (L+U)/2.0;
52  {
53  Tracer et1("Stage 2");
54  RowVector test(6);
55  test(1) = U.Trace();
56  test(2) = L.Trace();
57  test(3) = D.Trace();
58  test(4) = S.Trace();
59  test(5) = M.Trace();
60  test(6) = ((L+U)/2.0).Trace();
61  test = test - 21; Print(test);
62  test(1) = LogDeterminant(U).Value();
63  test(2) = LogDeterminant(L).Value();
64  test(3) = LogDeterminant(D).Value();
65  test(4) = LogDeterminant(D).Value();
66  test(5) = LogDeterminant((L+D)/2.0).Value();
67  test(6) = Determinant((L+D)/2.0);
68  test = test - 720; Clean(test,0.000000001); Print(test);
69  }
70 
71  {
72  Tracer et1("Stage 3");
73  S << L*U; M = S;
74  RowVector test(8);
75  test(1) = LogDeterminant(S).Value();
76  test(2) = LogDeterminant(M).Value();
77  test(3) = LogDeterminant(L*U).Value();
78  test(4) = LogDeterminant(Matrix(L*L)).Value();
79  test(5) = Determinant(S);
80  test(6) = Determinant(M);
81  test(7) = Determinant(L*U);
82  test(8) = Determinant(Matrix(L*L));
83  test = test - 720.0 * 720.0; Clean(test,0.00000001); Print(test);
84  }
85 
86  {
87  Tracer et1("Stage 4");
88  M = S * S;
89  Matrix SX = S;
90  RowVector test(3);
91  test(1) = SumSquare(S);
92  test(2) = SumSquare(SX);
93  test(3) = Trace(M);
94  test = test - 3925961.0; Print(test);
95  }
96  {
97  Tracer et1("Stage 5");
98  SymmetricMatrix SM(10), SN(10);
99  Real S = 0.0;
100  for (i=1; i<=10; i++) for (j=i; j<=10; j++)
101  {
102  SM(i,j) = 1.5 * i - j; SN(i,j) = SM(i,j) * SM(i,j);
103  if (SM(i,j) < 0.0) SN(i,j) = - SN(i,j);
104  S += SN(i,j) * ((i==j) ? 1.0 : 2.0);
105  }
106  Matrix M = SM, N = SN; RowVector test(4);
107  test(1) = SumAbsoluteValue(SN);
108  test(2) = SumAbsoluteValue(-SN);
109  test(3) = SumAbsoluteValue(N);
110  test(4) = SumAbsoluteValue(-N);
111  test = test - 1168.75; Print(test);
112  test(1) = Sum(SN);
113  test(2) = -Sum(-SN);
114  test(3) = Sum(N);
115  test(4) = -Sum(-N);
116  test = test - S; Print(test);
117  test(1) = MaximumAbsoluteValue(SM);
118  test(2) = MaximumAbsoluteValue(-SM);
119  test(3) = MaximumAbsoluteValue(M);
120  test(4) = MaximumAbsoluteValue(-M);
121  test = test - 8.5; Print(test);
122  }
123  {
124  Tracer et1("Stage 6");
125  Matrix M(15,20); Real value = 0.0;
126  for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 1.5 * i - j; }
127  for (i=1; i<=20; i++)
128  { Real v = SumAbsoluteValue(M.Column(i)); if (value<v) value = v; }
129  RowVector test(3);
130  test(1) = value;
131  test(2) = Norm1(M);
132  test(3) = NormInfinity(M.t());
133  test = test - 165; Print(test);
134  test.ReSize(5);
135  ColumnVector CV = M.AsColumn(); M = CV.t();
136  test(1) = Norm1(CV.t());
137  test(2) = MaximumAbsoluteValue(M);
138  test(3) = NormInfinity(CV);
139  test(4) = Norm1(M);
140  test(5) = NormInfinity(M.t());
141  test = test - 21.5; Print(test);
142  }
143  {
144  Tracer et1("Stage 7");
145  Matrix M(15,20);
146  for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 2.5 * i - j; }
147  SymmetricMatrix SM; SM << M * M.t();
148  ColumnVector test(6);
149  test(1) = sqrt(SumSquare(M)) - NormFrobenius(M);
150  Real a = sqrt(SumSquare(SM));
151  test(2) = NormFrobenius(M * M.t()) - a;
152  test(3) = SM.NormFrobenius() - a;
153  test(4) = (M * M.t()).NormFrobenius() - a;
154  test(5) = NormFrobenius(SM) - a;
155  test(6) = Trace(SM) - M.SumSquare();
156  Clean(test, 0.00000001); Print(test);
157  }
158 
159 // cout << "\nEnd of Sixteenth test\n";
160 }
161 
162 
LogAndSign LogDeterminant(const BaseMatrix &B)
Definition: newmat.h:2088
Real Sum(const BaseMatrix &B)
Definition: newmat.h:2107
Real Value() const
Definition: newmat.h:64
static void test(int n)
Definition: tmtf.cpp:115
void trymatg()
Definition: tmtg.cpp:24
double Real
Definition: include.h:307
Real SumSquare(const BaseMatrix &B)
Definition: newmat.h:2095
Upper triangular matrix.
Definition: newmat.h:799
void Clean(Matrix &A, Real c)
Definition: tmt.cpp:128
GetSubMatrix Column(int f) const
Definition: newmat.h:2152
Real Trace() const
Definition: newmat.h:383
Real NormInfinity(const BaseMatrix &B)
Definition: newmat.h:2126
Real Norm1(const BaseMatrix &B)
Definition: newmat.h:2122
TransposedMatrix t() const
Definition: newmat6.cpp:320
Real Trace(const BaseMatrix &B)
Definition: newmat.h:2100
Real MaximumAbsoluteValue(const BaseMatrix &B)
Definition: newmat.h:2111
Real NormFrobenius() const
Definition: newmat.h:349
Real NormFrobenius(const BaseMatrix &B)
Definition: newmat.h:2098
static void PrintTrace()
Definition: myexcept.cpp:109
The usual rectangular matrix.
Definition: newmat.h:625
Real SumSquare() const
Definition: newmat.h:346
Real SumAbsoluteValue(const BaseMatrix &B)
Definition: newmat.h:2103
FloatVector FloatVector * a
Diagonal matrix.
Definition: newmat.h:896
Lower triangular matrix.
Definition: newmat.h:848
DiagedMatrix AsDiagonal() const
Definition: newmat.h:2143
Real Determinant(const BaseMatrix &B)
Definition: newmat.h:2092
Row vector.
Definition: newmat.h:953
ColedMatrix AsColumn() const
Definition: newmat.h:2142
void Print(const Matrix &X)
Definition: tmt.cpp:42
Column vector.
Definition: newmat.h:1008
Symmetric matrix.
Definition: newmat.h:753


kni
Author(s): Martin Günther
autogenerated on Fri Jun 7 2019 22:06:45