11 #ifndef EIGEN_ORTHOMETHODS_H    12 #define EIGEN_ORTHOMETHODS_H    23 template<
typename Derived>
    24 template<
typename OtherDerived>
    25 inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
    36     numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
    37     numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
    38     numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
    44 template< 
int Arch,
typename VectorLhs,
typename VectorRhs,
    45           typename Scalar = 
typename VectorLhs::Scalar,
    46           bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&
PacketAccessBit)>
    49   run(
const VectorLhs& lhs, 
const VectorRhs& rhs)
    52       numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
    53       numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
    54       numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
    71 template<
typename Derived>
    72 template<
typename OtherDerived>
    81   DerivedNested lhs(derived());
    82   OtherDerivedNested rhs(other.derived());
    98 template<
typename ExpressionType, 
int Direction>
    99 template<
typename OtherDerived>
   105     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
   110     eigen_assert(CrossReturnType::RowsAtCompileTime==3 && 
"the matrix must have exactly 3 rows");
   111     res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().
row(2) * other.coeff(1)).
conjugate();
   112     res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().
row(0) * other.coeff(2)).
conjugate();
   113     res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().
row(1) * other.coeff(0)).
conjugate();
   117     eigen_assert(CrossReturnType::ColsAtCompileTime==3 && 
"the matrix must have exactly 3 columns");
   118     res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().
col(2) * other.coeff(1)).
conjugate();
   119     res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().
col(0) * other.coeff(2)).
conjugate();
   120     res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().
col(1) * other.coeff(0)).
conjugate();
   127 template<
typename Derived, 
int Size = Derived::SizeAtCompileTime>
   133   typedef typename Derived::Index 
Index;
   135   static inline VectorType 
run(
const Derived& src)
   137     VectorType perp = VectorType::Zero(src.size());
   140     src.cwiseAbs().maxCoeff(&maxi);
   143     RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
   144     perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
   145     perp.coeffRef(sndi) =  numext::conj(src.coeff(maxi)) * invnm;
   151 template<
typename Derived>
   157   static inline VectorType 
run(
const Derived& src)
   170       RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
   171       perp.coeffRef(0) = -numext::conj(src.y())*invnm;
   172       perp.coeffRef(1) = numext::conj(src.x())*invnm;
   173       perp.coeffRef(2) = 0;
   181       RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
   182       perp.coeffRef(0) = 0;
   183       perp.coeffRef(1) = -numext::conj(src.z())*invnm;
   184       perp.coeffRef(2) = numext::conj(src.y())*invnm;
   191 template<
typename Derived>
   195   static inline VectorType 
run(
const Derived& src)
   196   { 
return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
   208 template<
typename Derived>
   218 #endif // EIGEN_ORTHOMETHODS_H 
PlainObject unitOrthogonal(void) const 
const CrossReturnType cross(const MatrixBase< OtherDerived > &other) const 
NumTraits< Scalar >::Real RealScalar
static internal::plain_matrix_type< VectorLhs >::type run(const VectorLhs &lhs, const VectorRhs &rhs)
traits< Derived >::Scalar Scalar
plain_matrix_type< Derived >::type VectorType
traits< Derived >::Scalar Scalar
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
internal::traits< Derived >::Scalar Scalar
const unsigned int PacketAccessBit
Matrix< Scalar, 2, 1 > Vector2
PlainObject cross3(const MatrixBase< OtherDerived > &other) const 
ConjugateReturnType conjugate() const 
plain_matrix_type< Derived >::type VectorType
static VectorType run(const Derived &src)
cross_product_return_type< OtherDerived >::type cross(const MatrixBase< OtherDerived > &other) const 
static VectorType run(const Derived &src)
plain_matrix_type< Derived >::type VectorType
The matrix class, also used for vectors and row-vectors. 
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
ExpressionType::PlainObject CrossReturnType
Base class for all dense matrices, vectors, and expressions. 
NumTraits< Scalar >::Real RealScalar
static VectorType run(const Derived &src)
#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE)