gtest_unittest.cc
Go to the documentation of this file.
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself. This verifies that the basic constructs of
33 // Google Test work.
34 
35 #include "gtest/gtest.h"
36 
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42  || testing::GTEST_FLAG(break_on_failure)
43  || testing::GTEST_FLAG(catch_exceptions)
44  || testing::GTEST_FLAG(color) != "unknown"
45  || testing::GTEST_FLAG(filter) != "unknown"
46  || testing::GTEST_FLAG(list_tests)
47  || testing::GTEST_FLAG(output) != "unknown"
48  || testing::GTEST_FLAG(print_time)
49  || testing::GTEST_FLAG(random_seed)
50  || testing::GTEST_FLAG(repeat) > 0
51  || testing::GTEST_FLAG(show_internal_stack_frames)
52  || testing::GTEST_FLAG(shuffle)
53  || testing::GTEST_FLAG(stack_trace_depth) > 0
54  || testing::GTEST_FLAG(stream_result_to) != "unknown"
55  || testing::GTEST_FLAG(throw_on_failure);
56  EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h> // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <map>
65 #include <vector>
66 #include <ostream>
67 
68 #include "gtest/gtest-spi.h"
69 
70 // Indicates that this translation unit is part of Google Test's
71 // implementation. It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error. This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78 
79 namespace testing {
80 namespace internal {
81 
82 #if GTEST_CAN_STREAM_RESULTS_
83 
84 class StreamingListenerTest : public Test {
85  public:
86  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87  public:
88  // Sends a string to the socket.
89  virtual void Send(const string& message) { output_ += message; }
90 
91  string output_;
92  };
93 
94  StreamingListenerTest()
95  : fake_sock_writer_(new FakeSocketWriter),
96  streamer_(fake_sock_writer_),
97  test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98 
99  protected:
100  string* output() { return &(fake_sock_writer_->output_); }
101 
102  FakeSocketWriter* const fake_sock_writer_;
103  StreamingListener streamer_;
104  UnitTest unit_test_;
105  TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
106 };
107 
108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109  *output() = "";
110  streamer_.OnTestProgramEnd(unit_test_);
111  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112 }
113 
114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115  *output() = "";
116  streamer_.OnTestIterationEnd(unit_test_, 42);
117  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118 }
119 
120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
121  *output() = "";
122  streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124 }
125 
126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127  *output() = "";
128  streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130 }
131 
132 TEST_F(StreamingListenerTest, OnTestStart) {
133  *output() = "";
134  streamer_.OnTestStart(test_info_obj_);
135  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136 }
137 
138 TEST_F(StreamingListenerTest, OnTestEnd) {
139  *output() = "";
140  streamer_.OnTestEnd(test_info_obj_);
141  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142 }
143 
144 TEST_F(StreamingListenerTest, OnTestPartResult) {
145  *output() = "";
146  streamer_.OnTestPartResult(TestPartResult(
147  TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148 
149  // Meta characters in the failure message should be properly escaped.
150  EXPECT_EQ(
151  "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152  *output());
153 }
154 
155 #endif // GTEST_CAN_STREAM_RESULTS_
156 
157 // Provides access to otherwise private parts of the TestEventListeners class
158 // that are needed to test it.
160  public:
162  return listeners->repeater();
163  }
164 
166  TestEventListener* listener) {
167  listeners->SetDefaultResultPrinter(listener);
168  }
170  TestEventListener* listener) {
171  listeners->SetDefaultXmlGenerator(listener);
172  }
173 
174  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175  return listeners.EventForwardingEnabled();
176  }
177 
178  static void SuppressEventForwarding(TestEventListeners* listeners) {
179  listeners->SuppressEventForwarding();
180  }
181 };
182 
184  protected:
186 
187  // Forwards to UnitTest::RecordProperty() to bypass access controls.
188  void UnitTestRecordProperty(const char* key, const std::string& value) {
189  unit_test_.RecordProperty(key, value);
190  }
191 
193 };
194 
195 } // namespace internal
196 } // namespace testing
197 
201 using testing::DoubleLE;
204 using testing::FloatLE;
205 using testing::GTEST_FLAG(also_run_disabled_tests);
206 using testing::GTEST_FLAG(break_on_failure);
207 using testing::GTEST_FLAG(catch_exceptions);
208 using testing::GTEST_FLAG(color);
209 using testing::GTEST_FLAG(death_test_use_fork);
210 using testing::GTEST_FLAG(filter);
211 using testing::GTEST_FLAG(list_tests);
213 using testing::GTEST_FLAG(print_time);
214 using testing::GTEST_FLAG(random_seed);
215 using testing::GTEST_FLAG(repeat);
216 using testing::GTEST_FLAG(show_internal_stack_frames);
217 using testing::GTEST_FLAG(shuffle);
218 using testing::GTEST_FLAG(stack_trace_depth);
219 using testing::GTEST_FLAG(stream_result_to);
220 using testing::GTEST_FLAG(throw_on_failure);
223 using testing::Message;
226 using testing::Test;
227 using testing::TestCase;
229 using testing::TestInfo;
233 using testing::TestResult;
235 using testing::UnitTest;
292 
293 #if GTEST_HAS_STREAM_REDIRECTION
296 #endif
297 
298 #if GTEST_IS_THREADSAFE
299 using testing::internal::ThreadWithParam;
300 #endif
301 
302 class TestingVector : public std::vector<int> {
303 };
304 
305 ::std::ostream& operator<<(::std::ostream& os,
306  const TestingVector& vector) {
307  os << "{ ";
308  for (size_t i = 0; i < vector.size(); i++) {
309  os << vector[i] << " ";
310  }
311  os << "}";
312  return os;
313 }
314 
315 // This line tests that we can define tests in an unnamed namespace.
316 namespace {
317 
318 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
319  const int seed = GetRandomSeedFromFlag(0);
320  EXPECT_LE(1, seed);
321  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
322 }
323 
324 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
328  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
330 }
331 
332 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
333  const int seed1 = GetRandomSeedFromFlag(-1);
334  EXPECT_LE(1, seed1);
335  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
336 
337  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
338  EXPECT_LE(1, seed2);
339  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
340 }
341 
342 TEST(GetNextRandomSeedTest, WorksForValidInput) {
345  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
348 
349  // We deliberately don't test GetNextRandomSeed() with invalid
350  // inputs, as that requires death tests, which are expensive. This
351  // is fine as GetNextRandomSeed() is internal and has a
352  // straightforward definition.
353 }
354 
355 static void ClearCurrentTestPartResults() {
357  GetUnitTestImpl()->current_test_result());
358 }
359 
360 // Tests GetTypeId.
361 
362 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
363  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
364  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
365 }
366 
367 class SubClassOfTest : public Test {};
368 class AnotherSubClassOfTest : public Test {};
369 
370 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
371  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
372  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
373  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
374  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
375  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
376  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
377 }
378 
379 // Verifies that GetTestTypeId() returns the same value, no matter it
380 // is called from inside Google Test or outside of it.
381 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
383 }
384 
385 // Tests FormatTimeInMillisAsSeconds().
386 
387 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
389 }
390 
391 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
397 }
398 
399 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
400  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
401  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
402  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
403  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
405 }
406 
407 // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
408 // for particular dates below was verified in Python using
409 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
410 
411 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
412 // have to set up a particular timezone to obtain predictable results.
413 class FormatEpochTimeInMillisAsIso8601Test : public Test {
414  public:
415  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
416  // 32 bits, even when 64-bit integer types are available. We have to
417  // force the constants to have a 64-bit type here.
418  static const TimeInMillis kMillisPerSec = 1000;
419 
420  private:
421  virtual void SetUp() {
422  saved_tz_ = NULL;
423 
424  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* getenv, strdup: deprecated */)
425  if (getenv("TZ"))
426  saved_tz_ = strdup(getenv("TZ"));
428 
429  // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We
430  // cannot use the local time zone because the function's output depends
431  // on the time zone.
432  SetTimeZone("UTC+00");
433  }
434 
435  virtual void TearDown() {
436  SetTimeZone(saved_tz_);
437  free(const_cast<char*>(saved_tz_));
438  saved_tz_ = NULL;
439  }
440 
441  static void SetTimeZone(const char* time_zone) {
442  // tzset() distinguishes between the TZ variable being present and empty
443  // and not being present, so we have to consider the case of time_zone
444  // being NULL.
445 #if _MSC_VER
446  // ...Unless it's MSVC, whose standard library's _putenv doesn't
447  // distinguish between an empty and a missing variable.
448  const std::string env_var =
449  std::string("TZ=") + (time_zone ? time_zone : "");
450  _putenv(env_var.c_str());
451  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
452  tzset();
454 #else
455  if (time_zone) {
456  setenv(("TZ"), time_zone, 1);
457  } else {
458  unsetenv("TZ");
459  }
460  tzset();
461 #endif
462  }
463 
464  const char* saved_tz_;
465 };
466 
467 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
468 
469 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
470  EXPECT_EQ("2011-10-31T18:52:42",
471  FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
472 }
473 
474 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
475  EXPECT_EQ(
476  "2011-10-31T18:52:42",
477  FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
478 }
479 
480 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
481  EXPECT_EQ("2011-09-03T05:07:02",
482  FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
483 }
484 
485 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
486  EXPECT_EQ("2011-09-28T17:08:22",
487  FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
488 }
489 
490 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
491  EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
492 }
493 
494 #if GTEST_CAN_COMPARE_NULL
495 
496 # ifdef __BORLANDC__
497 // Silences warnings: "Condition is always true", "Unreachable code"
498 # pragma option push -w-ccc -w-rch
499 # endif
500 
501 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
502 // pointer literal.
503 TEST(NullLiteralTest, IsTrueForNullLiterals) {
508 }
509 
510 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
511 // pointer literal.
512 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
516  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
517 }
518 
519 # ifdef __BORLANDC__
520 // Restores warnings after previous "#pragma option push" suppressed them.
521 # pragma option pop
522 # endif
523 
524 #endif // GTEST_CAN_COMPARE_NULL
525 //
526 // Tests CodePointToUtf8().
527 
528 // Tests that the NUL character L'\0' is encoded correctly.
529 TEST(CodePointToUtf8Test, CanEncodeNul) {
530  EXPECT_EQ("", CodePointToUtf8(L'\0'));
531 }
532 
533 // Tests that ASCII characters are encoded correctly.
534 TEST(CodePointToUtf8Test, CanEncodeAscii) {
535  EXPECT_EQ("a", CodePointToUtf8(L'a'));
536  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
537  EXPECT_EQ("&", CodePointToUtf8(L'&'));
538  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
539 }
540 
541 // Tests that Unicode code-points that have 8 to 11 bits are encoded
542 // as 110xxxxx 10xxxxxx.
543 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
544  // 000 1101 0011 => 110-00011 10-010011
545  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
546 
547  // 101 0111 0110 => 110-10101 10-110110
548  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
549  // in wide strings and wide chars. In order to accomodate them, we have to
550  // introduce such character constants as integers.
551  EXPECT_EQ("\xD5\xB6",
552  CodePointToUtf8(static_cast<wchar_t>(0x576)));
553 }
554 
555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
556 // as 1110xxxx 10xxxxxx 10xxxxxx.
557 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
558  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
559  EXPECT_EQ("\xE0\xA3\x93",
560  CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
561 
562  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
563  EXPECT_EQ("\xEC\x9D\x8D",
564  CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
565 }
566 
567 #if !GTEST_WIDE_STRING_USES_UTF16_
568 // Tests in this group require a wchar_t to hold > 16 bits, and thus
569 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
570 // 16-bit wide. This code may not compile on those systems.
571 
572 // Tests that Unicode code-points that have 17 to 21 bits are encoded
573 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
574 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
575  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
576  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
577 
578  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
579  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
580 
581  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
582  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
583 }
584 
585 // Tests that encoding an invalid code-point generates the expected result.
586 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
587  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
588 }
589 
590 #endif // !GTEST_WIDE_STRING_USES_UTF16_
591 
592 // Tests WideStringToUtf8().
593 
594 // Tests that the NUL character L'\0' is encoded correctly.
595 TEST(WideStringToUtf8Test, CanEncodeNul) {
596  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
597  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
598 }
599 
600 // Tests that ASCII strings are encoded correctly.
601 TEST(WideStringToUtf8Test, CanEncodeAscii) {
602  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
603  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
604  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
605  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
606 }
607 
608 // Tests that Unicode code-points that have 8 to 11 bits are encoded
609 // as 110xxxxx 10xxxxxx.
610 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
611  // 000 1101 0011 => 110-00011 10-010011
612  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
613  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
614 
615  // 101 0111 0110 => 110-10101 10-110110
616  const wchar_t s[] = { 0x576, '\0' };
617  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
618  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
619 }
620 
621 // Tests that Unicode code-points that have 12 to 16 bits are encoded
622 // as 1110xxxx 10xxxxxx 10xxxxxx.
623 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
624  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
625  const wchar_t s1[] = { 0x8D3, '\0' };
626  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
627  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
628 
629  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
630  const wchar_t s2[] = { 0xC74D, '\0' };
631  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
632  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
633 }
634 
635 // Tests that the conversion stops when the function encounters \0 character.
636 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
637  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
638 }
639 
640 // Tests that the conversion stops when the function reaches the limit
641 // specified by the 'length' parameter.
642 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
643  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
644 }
645 
646 #if !GTEST_WIDE_STRING_USES_UTF16_
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
649 // on the systems using UTF-16 encoding.
650 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
651  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
652  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
653  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
654 
655  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
656  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
657  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
658 }
659 
660 // Tests that encoding an invalid code-point generates the expected result.
661 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
662  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
663  WideStringToUtf8(L"\xABCDFF", -1).c_str());
664 }
665 #else // !GTEST_WIDE_STRING_USES_UTF16_
666 // Tests that surrogate pairs are encoded correctly on the systems using
667 // UTF-16 encoding in the wide strings.
668 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
669  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
670  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
671 }
672 
673 // Tests that encoding an invalid UTF-16 surrogate pair
674 // generates the expected result.
675 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
676  // Leading surrogate is at the end of the string.
677  const wchar_t s1[] = { 0xD800, '\0' };
678  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
679  // Leading surrogate is not followed by the trailing surrogate.
680  const wchar_t s2[] = { 0xD800, 'M', '\0' };
681  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
682  // Trailing surrogate appearas without a leading surrogate.
683  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
684  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
685 }
686 #endif // !GTEST_WIDE_STRING_USES_UTF16_
687 
688 // Tests that codepoint concatenation works correctly.
689 #if !GTEST_WIDE_STRING_USES_UTF16_
690 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
691  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
692  EXPECT_STREQ(
693  "\xF4\x88\x98\xB4"
694  "\xEC\x9D\x8D"
695  "\n"
696  "\xD5\xB6"
697  "\xE0\xA3\x93"
698  "\xF4\x88\x98\xB4",
699  WideStringToUtf8(s, -1).c_str());
700 }
701 #else
702 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
703  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
704  EXPECT_STREQ(
705  "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
706  WideStringToUtf8(s, -1).c_str());
707 }
708 #endif // !GTEST_WIDE_STRING_USES_UTF16_
709 
710 // Tests the Random class.
711 
712 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
715  random.Generate(0),
716  "Cannot generate a number in the range \\[0, 0\\)");
719  "Generation of a number in \\[0, 2147483649\\) was requested, "
720  "but this can only generate numbers in \\[0, 2147483648\\)");
721 }
722 
723 TEST(RandomTest, GeneratesNumbersWithinRange) {
724  const UInt32 kRange = 10000;
726  for (int i = 0; i < 10; i++) {
727  EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
728  }
729 
731  for (int i = 0; i < 10; i++) {
732  EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
733  }
734 }
735 
736 TEST(RandomTest, RepeatsWhenReseeded) {
737  const int kSeed = 123;
738  const int kArraySize = 10;
739  const UInt32 kRange = 10000;
740  UInt32 values[kArraySize];
741 
743  for (int i = 0; i < kArraySize; i++) {
744  values[i] = random.Generate(kRange);
745  }
746 
747  random.Reseed(kSeed);
748  for (int i = 0; i < kArraySize; i++) {
749  EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
750  }
751 }
752 
753 // Tests STL container utilities.
754 
755 // Tests CountIf().
756 
757 static bool IsPositive(int n) { return n > 0; }
758 
759 TEST(ContainerUtilityTest, CountIf) {
760  std::vector<int> v;
761  EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
762 
763  v.push_back(-1);
764  v.push_back(0);
765  EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
766 
767  v.push_back(2);
768  v.push_back(-10);
769  v.push_back(10);
770  EXPECT_EQ(2, CountIf(v, IsPositive));
771 }
772 
773 // Tests ForEach().
774 
775 static int g_sum = 0;
776 static void Accumulate(int n) { g_sum += n; }
777 
778 TEST(ContainerUtilityTest, ForEach) {
779  std::vector<int> v;
780  g_sum = 0;
781  ForEach(v, Accumulate);
782  EXPECT_EQ(0, g_sum); // Works for an empty container;
783 
784  g_sum = 0;
785  v.push_back(1);
786  ForEach(v, Accumulate);
787  EXPECT_EQ(1, g_sum); // Works for a container with one element.
788 
789  g_sum = 0;
790  v.push_back(20);
791  v.push_back(300);
792  ForEach(v, Accumulate);
793  EXPECT_EQ(321, g_sum);
794 }
795 
796 // Tests GetElementOr().
797 TEST(ContainerUtilityTest, GetElementOr) {
798  std::vector<char> a;
799  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
800 
801  a.push_back('a');
802  a.push_back('b');
803  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
804  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
805  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
806  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
807 }
808 
809 TEST(ContainerUtilityDeathTest, ShuffleRange) {
810  std::vector<int> a;
811  a.push_back(0);
812  a.push_back(1);
813  a.push_back(2);
815 
817  ShuffleRange(&random, -1, 1, &a),
818  "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
820  ShuffleRange(&random, 4, 4, &a),
821  "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
823  ShuffleRange(&random, 3, 2, &a),
824  "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
826  ShuffleRange(&random, 3, 4, &a),
827  "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
828 }
829 
830 class VectorShuffleTest : public Test {
831  protected:
832  static const int kVectorSize = 20;
833 
834  VectorShuffleTest() : random_(1) {
835  for (int i = 0; i < kVectorSize; i++) {
836  vector_.push_back(i);
837  }
838  }
839 
840  static bool VectorIsCorrupt(const TestingVector& vector) {
841  if (kVectorSize != static_cast<int>(vector.size())) {
842  return true;
843  }
844 
845  bool found_in_vector[kVectorSize] = { false };
846  for (size_t i = 0; i < vector.size(); i++) {
847  const int e = vector[i];
848  if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
849  return true;
850  }
851  found_in_vector[e] = true;
852  }
853 
854  // Vector size is correct, elements' range is correct, no
855  // duplicate elements. Therefore no corruption has occurred.
856  return false;
857  }
858 
859  static bool VectorIsNotCorrupt(const TestingVector& vector) {
860  return !VectorIsCorrupt(vector);
861  }
862 
863  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
864  for (int i = begin; i < end; i++) {
865  if (i != vector[i]) {
866  return true;
867  }
868  }
869  return false;
870  }
871 
872  static bool RangeIsUnshuffled(
873  const TestingVector& vector, int begin, int end) {
874  return !RangeIsShuffled(vector, begin, end);
875  }
876 
877  static bool VectorIsShuffled(const TestingVector& vector) {
878  return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
879  }
880 
881  static bool VectorIsUnshuffled(const TestingVector& vector) {
882  return !VectorIsShuffled(vector);
883  }
884 
886  TestingVector vector_;
887 }; // class VectorShuffleTest
888 
889 const int VectorShuffleTest::kVectorSize;
890 
891 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
892  // Tests an empty range at the beginning...
893  ShuffleRange(&random_, 0, 0, &vector_);
894  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
895  ASSERT_PRED1(VectorIsUnshuffled, vector_);
896 
897  // ...in the middle...
898  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
899  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
900  ASSERT_PRED1(VectorIsUnshuffled, vector_);
901 
902  // ...at the end...
903  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
904  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
905  ASSERT_PRED1(VectorIsUnshuffled, vector_);
906 
907  // ...and past the end.
908  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
909  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
910  ASSERT_PRED1(VectorIsUnshuffled, vector_);
911 }
912 
913 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
914  // Tests a size one range at the beginning...
915  ShuffleRange(&random_, 0, 1, &vector_);
916  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917  ASSERT_PRED1(VectorIsUnshuffled, vector_);
918 
919  // ...in the middle...
920  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
921  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
922  ASSERT_PRED1(VectorIsUnshuffled, vector_);
923 
924  // ...and at the end.
925  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
926  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
927  ASSERT_PRED1(VectorIsUnshuffled, vector_);
928 }
929 
930 // Because we use our own random number generator and a fixed seed,
931 // we can guarantee that the following "random" tests will succeed.
932 
933 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
934  Shuffle(&random_, &vector_);
935  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
936  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
937 
938  // Tests the first and last elements in particular to ensure that
939  // there are no off-by-one problems in our shuffle algorithm.
940  EXPECT_NE(0, vector_[0]);
941  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
942 }
943 
944 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
945  const int kRangeSize = kVectorSize/2;
946 
947  ShuffleRange(&random_, 0, kRangeSize, &vector_);
948 
949  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
950  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
951  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
952 }
953 
954 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
955  const int kRangeSize = kVectorSize / 2;
956  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
957 
958  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
959  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
960  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
961 }
962 
963 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
964  int kRangeSize = kVectorSize/3;
965  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
966 
967  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
968  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
969  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
970  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
971 }
972 
973 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
974  TestingVector vector2;
975  for (int i = 0; i < kVectorSize; i++) {
976  vector2.push_back(i);
977  }
978 
979  random_.Reseed(1234);
980  Shuffle(&random_, &vector_);
981  random_.Reseed(1234);
982  Shuffle(&random_, &vector2);
983 
984  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
985  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
986 
987  for (int i = 0; i < kVectorSize; i++) {
988  EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
989  }
990 }
991 
992 // Tests the size of the AssertHelper class.
993 
994 TEST(AssertHelperTest, AssertHelperIsSmall) {
995  // To avoid breaking clients that use lots of assertions in one
996  // function, we cannot grow the size of AssertHelper.
997  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
998 }
999 
1000 // Tests String::EndsWithCaseInsensitive().
1001 TEST(StringTest, EndsWithCaseInsensitive) {
1002  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1003  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1006 
1010 }
1011 
1012 // C++Builder's preprocessor is buggy; it fails to expand macros that
1013 // appear in macro parameters after wide char literals. Provide an alias
1014 // for NULL as a workaround.
1015 static const wchar_t* const kNull = NULL;
1016 
1017 // Tests String::CaseInsensitiveWideCStringEquals
1018 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1027 }
1028 
1029 #if GTEST_OS_WINDOWS
1030 
1031 // Tests String::ShowWideCString().
1032 TEST(StringTest, ShowWideCString) {
1033  EXPECT_STREQ("(null)",
1034  String::ShowWideCString(NULL).c_str());
1035  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1036  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1037 }
1038 
1039 # if GTEST_OS_WINDOWS_MOBILE
1040 TEST(StringTest, AnsiAndUtf16Null) {
1041  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1042  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1043 }
1044 
1045 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1046  const char* ansi = String::Utf16ToAnsi(L"str");
1047  EXPECT_STREQ("str", ansi);
1048  delete [] ansi;
1049  const WCHAR* utf16 = String::AnsiToUtf16("str");
1050  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1051  delete [] utf16;
1052 }
1053 
1054 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1055  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1056  EXPECT_STREQ(".:\\ \"*?", ansi);
1057  delete [] ansi;
1058  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1059  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1060  delete [] utf16;
1061 }
1062 # endif // GTEST_OS_WINDOWS_MOBILE
1063 
1064 #endif // GTEST_OS_WINDOWS
1065 
1066 // Tests TestProperty construction.
1067 TEST(TestPropertyTest, StringValue) {
1068  TestProperty property("key", "1");
1069  EXPECT_STREQ("key", property.key());
1070  EXPECT_STREQ("1", property.value());
1071 }
1072 
1073 // Tests TestProperty replacing a value.
1074 TEST(TestPropertyTest, ReplaceStringValue) {
1075  TestProperty property("key", "1");
1076  EXPECT_STREQ("1", property.value());
1077  property.SetValue("2");
1078  EXPECT_STREQ("2", property.value());
1079 }
1080 
1081 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1082 // functions (i.e. their definitions cannot be inlined at the call
1083 // sites), or C++Builder won't compile the code.
1084 static void AddFatalFailure() {
1085  FAIL() << "Expected fatal failure.";
1086 }
1087 
1088 static void AddNonfatalFailure() {
1089  ADD_FAILURE() << "Expected non-fatal failure.";
1090 }
1091 
1092 class ScopedFakeTestPartResultReporterTest : public Test {
1093  public: // Must be public and not protected due to a bug in g++ 3.4.2.
1094  enum FailureMode {
1095  FATAL_FAILURE,
1096  NONFATAL_FAILURE
1097  };
1098  static void AddFailure(FailureMode failure) {
1099  if (failure == FATAL_FAILURE) {
1100  AddFatalFailure();
1101  } else {
1102  AddNonfatalFailure();
1103  }
1104  }
1105 };
1106 
1107 // Tests that ScopedFakeTestPartResultReporter intercepts test
1108 // failures.
1109 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1110  TestPartResultArray results;
1111  {
1114  &results);
1115  AddFailure(NONFATAL_FAILURE);
1116  AddFailure(FATAL_FAILURE);
1117  }
1118 
1119  EXPECT_EQ(2, results.size());
1122 }
1123 
1124 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1125  TestPartResultArray results;
1126  {
1127  // Tests, that the deprecated constructor still works.
1128  ScopedFakeTestPartResultReporter reporter(&results);
1129  AddFailure(NONFATAL_FAILURE);
1130  }
1131  EXPECT_EQ(1, results.size());
1132 }
1133 
1134 #if GTEST_IS_THREADSAFE
1135 
1136 class ScopedFakeTestPartResultReporterWithThreadsTest
1137  : public ScopedFakeTestPartResultReporterTest {
1138  protected:
1139  static void AddFailureInOtherThread(FailureMode failure) {
1140  ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1141  thread.Join();
1142  }
1143 };
1144 
1145 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1146  InterceptsTestFailuresInAllThreads) {
1147  TestPartResultArray results;
1148  {
1151  AddFailure(NONFATAL_FAILURE);
1152  AddFailure(FATAL_FAILURE);
1153  AddFailureInOtherThread(NONFATAL_FAILURE);
1154  AddFailureInOtherThread(FATAL_FAILURE);
1155  }
1156 
1157  EXPECT_EQ(4, results.size());
1162 }
1163 
1164 #endif // GTEST_IS_THREADSAFE
1165 
1166 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1167 // work even if the failure is generated in a called function rather than
1168 // the current context.
1169 
1170 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1171 
1172 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1173  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1174 }
1175 
1176 #if GTEST_HAS_GLOBAL_STRING
1177 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1178  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1179 }
1180 #endif
1181 
1182 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1183  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1184  ::std::string("Expected fatal failure."));
1185 }
1186 
1187 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1188  // We have another test below to verify that the macro catches fatal
1189  // failures generated on another thread.
1190  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1191  "Expected fatal failure.");
1192 }
1193 
1194 #ifdef __BORLANDC__
1195 // Silences warnings: "Condition is always true"
1196 # pragma option push -w-ccc
1197 #endif
1198 
1199 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1200 // function even when the statement in it contains ASSERT_*.
1201 
1202 int NonVoidFunction() {
1203  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1205  return 0;
1206 }
1207 
1208 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1209  NonVoidFunction();
1210 }
1211 
1212 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1213 // current function even though 'statement' generates a fatal failure.
1214 
1215 void DoesNotAbortHelper(bool* aborted) {
1216  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1218 
1219  *aborted = false;
1220 }
1221 
1222 #ifdef __BORLANDC__
1223 // Restores warnings after previous "#pragma option push" suppressed them.
1224 # pragma option pop
1225 #endif
1226 
1227 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1228  bool aborted = true;
1229  DoesNotAbortHelper(&aborted);
1230  EXPECT_FALSE(aborted);
1231 }
1232 
1233 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1234 // statement that contains a macro which expands to code containing an
1235 // unprotected comma.
1236 
1237 static int global_var = 0;
1238 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1239 
1240 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1241 #ifndef __BORLANDC__
1242  // ICE's in C++Builder.
1245  AddFatalFailure();
1246  }, "");
1247 #endif
1248 
1251  AddFatalFailure();
1252  }, "");
1253 }
1254 
1255 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1256 
1257 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1258 
1259 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1260  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1261  "Expected non-fatal failure.");
1262 }
1263 
1264 #if GTEST_HAS_GLOBAL_STRING
1265 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1266  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1267  ::string("Expected non-fatal failure."));
1268 }
1269 #endif
1270 
1271 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1272  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1273  ::std::string("Expected non-fatal failure."));
1274 }
1275 
1276 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1277  // We have another test below to verify that the macro catches
1278  // non-fatal failures generated on another thread.
1279  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1280  "Expected non-fatal failure.");
1281 }
1282 
1283 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1284 // statement that contains a macro which expands to code containing an
1285 // unprotected comma.
1286 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1289  AddNonfatalFailure();
1290  }, "");
1291 
1294  AddNonfatalFailure();
1295  }, "");
1296 }
1297 
1298 #if GTEST_IS_THREADSAFE
1299 
1300 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1301  ExpectFailureWithThreadsTest;
1302 
1303 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1304  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1305  "Expected fatal failure.");
1306 }
1307 
1308 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1310  AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1311 }
1312 
1313 #endif // GTEST_IS_THREADSAFE
1314 
1315 // Tests the TestProperty class.
1316 
1317 TEST(TestPropertyTest, ConstructorWorks) {
1318  const TestProperty property("key", "value");
1319  EXPECT_STREQ("key", property.key());
1320  EXPECT_STREQ("value", property.value());
1321 }
1322 
1323 TEST(TestPropertyTest, SetValue) {
1324  TestProperty property("key", "value_1");
1325  EXPECT_STREQ("key", property.key());
1326  property.SetValue("value_2");
1327  EXPECT_STREQ("key", property.key());
1328  EXPECT_STREQ("value_2", property.value());
1329 }
1330 
1331 // Tests the TestResult class
1332 
1333 // The test fixture for testing TestResult.
1334 class TestResultTest : public Test {
1335  protected:
1336  typedef std::vector<TestPartResult> TPRVector;
1337 
1338  // We make use of 2 TestPartResult objects,
1339  TestPartResult * pr1, * pr2;
1340 
1341  // ... and 3 TestResult objects.
1342  TestResult * r0, * r1, * r2;
1343 
1344  virtual void SetUp() {
1345  // pr1 is for success.
1347  "foo/bar.cc",
1348  10,
1349  "Success!");
1350 
1351  // pr2 is for fatal failure.
1353  "foo/bar.cc",
1354  -1, // This line number means "unknown"
1355  "Failure!");
1356 
1357  // Creates the TestResult objects.
1358  r0 = new TestResult();
1359  r1 = new TestResult();
1360  r2 = new TestResult();
1361 
1362  // In order to test TestResult, we need to modify its internal
1363  // state, in particular the TestPartResult vector it holds.
1364  // test_part_results() returns a const reference to this vector.
1365  // We cast it to a non-const object s.t. it can be modified (yes,
1366  // this is a hack).
1367  TPRVector* results1 = const_cast<TPRVector*>(
1369  TPRVector* results2 = const_cast<TPRVector*>(
1371 
1372  // r0 is an empty TestResult.
1373 
1374  // r1 contains a single SUCCESS TestPartResult.
1375  results1->push_back(*pr1);
1376 
1377  // r2 contains a SUCCESS, and a FAILURE.
1378  results2->push_back(*pr1);
1379  results2->push_back(*pr2);
1380  }
1381 
1382  virtual void TearDown() {
1383  delete pr1;
1384  delete pr2;
1385 
1386  delete r0;
1387  delete r1;
1388  delete r2;
1389  }
1390 
1391  // Helper that compares two two TestPartResults.
1392  static void CompareTestPartResult(const TestPartResult& expected,
1393  const TestPartResult& actual) {
1394  EXPECT_EQ(expected.type(), actual.type());
1395  EXPECT_STREQ(expected.file_name(), actual.file_name());
1396  EXPECT_EQ(expected.line_number(), actual.line_number());
1397  EXPECT_STREQ(expected.summary(), actual.summary());
1398  EXPECT_STREQ(expected.message(), actual.message());
1399  EXPECT_EQ(expected.passed(), actual.passed());
1400  EXPECT_EQ(expected.failed(), actual.failed());
1401  EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1402  EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1403  }
1404 };
1405 
1406 // Tests TestResult::total_part_count().
1407 TEST_F(TestResultTest, total_part_count) {
1408  ASSERT_EQ(0, r0->total_part_count());
1409  ASSERT_EQ(1, r1->total_part_count());
1410  ASSERT_EQ(2, r2->total_part_count());
1411 }
1412 
1413 // Tests TestResult::Passed().
1414 TEST_F(TestResultTest, Passed) {
1415  ASSERT_TRUE(r0->Passed());
1416  ASSERT_TRUE(r1->Passed());
1417  ASSERT_FALSE(r2->Passed());
1418 }
1419 
1420 // Tests TestResult::Failed().
1421 TEST_F(TestResultTest, Failed) {
1422  ASSERT_FALSE(r0->Failed());
1423  ASSERT_FALSE(r1->Failed());
1424  ASSERT_TRUE(r2->Failed());
1425 }
1426 
1427 // Tests TestResult::GetTestPartResult().
1428 
1429 typedef TestResultTest TestResultDeathTest;
1430 
1431 TEST_F(TestResultDeathTest, GetTestPartResult) {
1432  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1433  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1434  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1435  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1436 }
1437 
1438 // Tests TestResult has no properties when none are added.
1439 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1440  TestResult test_result;
1441  ASSERT_EQ(0, test_result.test_property_count());
1442 }
1443 
1444 // Tests TestResult has the expected property when added.
1445 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1446  TestResult test_result;
1447  TestProperty property("key_1", "1");
1448  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1449  ASSERT_EQ(1, test_result.test_property_count());
1450  const TestProperty& actual_property = test_result.GetTestProperty(0);
1451  EXPECT_STREQ("key_1", actual_property.key());
1452  EXPECT_STREQ("1", actual_property.value());
1453 }
1454 
1455 // Tests TestResult has multiple properties when added.
1456 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1457  TestResult test_result;
1458  TestProperty property_1("key_1", "1");
1459  TestProperty property_2("key_2", "2");
1460  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1461  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1462  ASSERT_EQ(2, test_result.test_property_count());
1463  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1464  EXPECT_STREQ("key_1", actual_property_1.key());
1465  EXPECT_STREQ("1", actual_property_1.value());
1466 
1467  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1468  EXPECT_STREQ("key_2", actual_property_2.key());
1469  EXPECT_STREQ("2", actual_property_2.value());
1470 }
1471 
1472 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
1473 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1474  TestResult test_result;
1475  TestProperty property_1_1("key_1", "1");
1476  TestProperty property_2_1("key_2", "2");
1477  TestProperty property_1_2("key_1", "12");
1478  TestProperty property_2_2("key_2", "22");
1479  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1480  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1481  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1482  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1483 
1484  ASSERT_EQ(2, test_result.test_property_count());
1485  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1486  EXPECT_STREQ("key_1", actual_property_1.key());
1487  EXPECT_STREQ("12", actual_property_1.value());
1488 
1489  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1490  EXPECT_STREQ("key_2", actual_property_2.key());
1491  EXPECT_STREQ("22", actual_property_2.value());
1492 }
1493 
1494 // Tests TestResult::GetTestProperty().
1495 TEST(TestResultPropertyTest, GetTestProperty) {
1496  TestResult test_result;
1497  TestProperty property_1("key_1", "1");
1498  TestProperty property_2("key_2", "2");
1499  TestProperty property_3("key_3", "3");
1500  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1501  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1502  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1503 
1504  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1505  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1506  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1507 
1508  EXPECT_STREQ("key_1", fetched_property_1.key());
1509  EXPECT_STREQ("1", fetched_property_1.value());
1510 
1511  EXPECT_STREQ("key_2", fetched_property_2.key());
1512  EXPECT_STREQ("2", fetched_property_2.value());
1513 
1514  EXPECT_STREQ("key_3", fetched_property_3.key());
1515  EXPECT_STREQ("3", fetched_property_3.value());
1516 
1517  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1518  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1519 }
1520 
1521 // Tests that GTestFlagSaver works on Windows and Mac.
1522 
1523 class GTestFlagSaverTest : public Test {
1524  protected:
1525  // Saves the Google Test flags such that we can restore them later, and
1526  // then sets them to their default values. This will be called
1527  // before the first test in this test case is run.
1528  static void SetUpTestCase() {
1529  saver_ = new GTestFlagSaver;
1530 
1531  GTEST_FLAG(also_run_disabled_tests) = false;
1532  GTEST_FLAG(break_on_failure) = false;
1533  GTEST_FLAG(catch_exceptions) = false;
1534  GTEST_FLAG(death_test_use_fork) = false;
1535  GTEST_FLAG(color) = "auto";
1536  GTEST_FLAG(filter) = "";
1537  GTEST_FLAG(list_tests) = false;
1538  GTEST_FLAG(output) = "";
1539  GTEST_FLAG(print_time) = true;
1540  GTEST_FLAG(random_seed) = 0;
1541  GTEST_FLAG(repeat) = 1;
1542  GTEST_FLAG(shuffle) = false;
1543  GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1544  GTEST_FLAG(stream_result_to) = "";
1545  GTEST_FLAG(throw_on_failure) = false;
1546  }
1547 
1548  // Restores the Google Test flags that the tests have modified. This will
1549  // be called after the last test in this test case is run.
1550  static void TearDownTestCase() {
1551  delete saver_;
1552  saver_ = NULL;
1553  }
1554 
1555  // Verifies that the Google Test flags have their default values, and then
1556  // modifies each of them.
1557  void VerifyAndModifyFlags() {
1558  EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1559  EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1560  EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1561  EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1562  EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1563  EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1564  EXPECT_FALSE(GTEST_FLAG(list_tests));
1565  EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1566  EXPECT_TRUE(GTEST_FLAG(print_time));
1567  EXPECT_EQ(0, GTEST_FLAG(random_seed));
1568  EXPECT_EQ(1, GTEST_FLAG(repeat));
1569  EXPECT_FALSE(GTEST_FLAG(shuffle));
1570  EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1571  EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1572  EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1573 
1574  GTEST_FLAG(also_run_disabled_tests) = true;
1575  GTEST_FLAG(break_on_failure) = true;
1576  GTEST_FLAG(catch_exceptions) = true;
1577  GTEST_FLAG(color) = "no";
1578  GTEST_FLAG(death_test_use_fork) = true;
1579  GTEST_FLAG(filter) = "abc";
1580  GTEST_FLAG(list_tests) = true;
1581  GTEST_FLAG(output) = "xml:foo.xml";
1582  GTEST_FLAG(print_time) = false;
1583  GTEST_FLAG(random_seed) = 1;
1584  GTEST_FLAG(repeat) = 100;
1585  GTEST_FLAG(shuffle) = true;
1586  GTEST_FLAG(stack_trace_depth) = 1;
1587  GTEST_FLAG(stream_result_to) = "localhost:1234";
1588  GTEST_FLAG(throw_on_failure) = true;
1589  }
1590 
1591  private:
1592  // For saving Google Test flags during this test case.
1593  static GTestFlagSaver* saver_;
1594 };
1595 
1596 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1597 
1598 // Google Test doesn't guarantee the order of tests. The following two
1599 // tests are designed to work regardless of their order.
1600 
1601 // Modifies the Google Test flags in the test body.
1602 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1603  VerifyAndModifyFlags();
1604 }
1605 
1606 // Verifies that the Google Test flags in the body of the previous test were
1607 // restored to their original values.
1608 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1609  VerifyAndModifyFlags();
1610 }
1611 
1612 // Sets an environment variable with the given name to the given
1613 // value. If the value argument is "", unsets the environment
1614 // variable. The caller must ensure that both arguments are not NULL.
1615 static void SetEnv(const char* name, const char* value) {
1616 #if GTEST_OS_WINDOWS_MOBILE
1617  // Environment variables are not supported on Windows CE.
1618  return;
1619 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1620  // C++Builder's putenv only stores a pointer to its parameter; we have to
1621  // ensure that the string remains valid as long as it might be needed.
1622  // We use an std::map to do so.
1623  static std::map<std::string, std::string*> added_env;
1624 
1625  // Because putenv stores a pointer to the string buffer, we can't delete the
1626  // previous string (if present) until after it's replaced.
1627  std::string *prev_env = NULL;
1628  if (added_env.find(name) != added_env.end()) {
1629  prev_env = added_env[name];
1630  }
1631  added_env[name] = new std::string(
1632  (Message() << name << "=" << value).GetString());
1633 
1634  // The standard signature of putenv accepts a 'char*' argument. Other
1635  // implementations, like C++Builder's, accept a 'const char*'.
1636  // We cast away the 'const' since that would work for both variants.
1637  putenv(const_cast<char*>(added_env[name]->c_str()));
1638  delete prev_env;
1639 #elif GTEST_OS_WINDOWS // If we are on Windows proper.
1640  _putenv((Message() << name << "=" << value).GetString().c_str());
1641 #else
1642  if (*value == '\0') {
1643  unsetenv(name);
1644  } else {
1645  setenv(name, value, 1);
1646  }
1647 #endif // GTEST_OS_WINDOWS_MOBILE
1648 }
1649 
1650 #if !GTEST_OS_WINDOWS_MOBILE
1651 // Environment variables are not supported on Windows CE.
1652 
1654 
1655 // Tests Int32FromGTestEnv().
1656 
1657 // Tests that Int32FromGTestEnv() returns the default value when the
1658 // environment variable is not set.
1659 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1660  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1661  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1662 }
1663 
1664 // Tests that Int32FromGTestEnv() returns the default value when the
1665 // environment variable overflows as an Int32.
1666 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1667  printf("(expecting 2 warnings)\n");
1668 
1669  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1670  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1671 
1672  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1673  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1674 }
1675 
1676 // Tests that Int32FromGTestEnv() returns the default value when the
1677 // environment variable does not represent a valid decimal integer.
1678 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1679  printf("(expecting 2 warnings)\n");
1680 
1681  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1682  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1683 
1684  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1685  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1686 }
1687 
1688 // Tests that Int32FromGTestEnv() parses and returns the value of the
1689 // environment variable when it represents a valid decimal integer in
1690 // the range of an Int32.
1691 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1692  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1693  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1694 
1695  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1696  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1697 }
1698 #endif // !GTEST_OS_WINDOWS_MOBILE
1699 
1700 // Tests ParseInt32Flag().
1701 
1702 // Tests that ParseInt32Flag() returns false and doesn't change the
1703 // output value when the flag has wrong format
1704 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1705  Int32 value = 123;
1706  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1707  EXPECT_EQ(123, value);
1708 
1709  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1710  EXPECT_EQ(123, value);
1711 }
1712 
1713 // Tests that ParseInt32Flag() returns false and doesn't change the
1714 // output value when the flag overflows as an Int32.
1715 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1716  printf("(expecting 2 warnings)\n");
1717 
1718  Int32 value = 123;
1719  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1720  EXPECT_EQ(123, value);
1721 
1722  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1723  EXPECT_EQ(123, value);
1724 }
1725 
1726 // Tests that ParseInt32Flag() returns false and doesn't change the
1727 // output value when the flag does not represent a valid decimal
1728 // integer.
1729 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1730  printf("(expecting 2 warnings)\n");
1731 
1732  Int32 value = 123;
1733  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1734  EXPECT_EQ(123, value);
1735 
1736  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1737  EXPECT_EQ(123, value);
1738 }
1739 
1740 // Tests that ParseInt32Flag() parses the value of the flag and
1741 // returns true when the flag represents a valid decimal integer in
1742 // the range of an Int32.
1743 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1744  Int32 value = 123;
1745  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1746  EXPECT_EQ(456, value);
1747 
1749  "abc", &value));
1750  EXPECT_EQ(-789, value);
1751 }
1752 
1753 // Tests that Int32FromEnvOrDie() parses the value of the var or
1754 // returns the correct default.
1755 // Environment variables are not supported on Windows CE.
1756 #if !GTEST_OS_WINDOWS_MOBILE
1757 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1758  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1759  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1760  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1761  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1762  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1763 }
1764 #endif // !GTEST_OS_WINDOWS_MOBILE
1765 
1766 // Tests that Int32FromEnvOrDie() aborts with an error message
1767 // if the variable is not an Int32.
1768 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1769  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1772  ".*");
1773 }
1774 
1775 // Tests that Int32FromEnvOrDie() aborts with an error message
1776 // if the variable cannot be represnted by an Int32.
1777 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1778  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1781  ".*");
1782 }
1783 
1784 // Tests that ShouldRunTestOnShard() selects all tests
1785 // where there is 1 shard.
1786 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1792 }
1793 
1794 class ShouldShardTest : public testing::Test {
1795  protected:
1796  virtual void SetUp() {
1797  index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1798  total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1799  }
1800 
1801  virtual void TearDown() {
1802  SetEnv(index_var_, "");
1803  SetEnv(total_var_, "");
1804  }
1805 
1806  const char* index_var_;
1807  const char* total_var_;
1808 };
1809 
1810 // Tests that sharding is disabled if neither of the environment variables
1811 // are set.
1812 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1813  SetEnv(index_var_, "");
1814  SetEnv(total_var_, "");
1815 
1816  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1817  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1818 }
1819 
1820 // Tests that sharding is not enabled if total_shards == 1.
1821 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1822  SetEnv(index_var_, "0");
1823  SetEnv(total_var_, "1");
1824  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1825  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1826 }
1827 
1828 // Tests that sharding is enabled if total_shards > 1 and
1829 // we are not in a death test subprocess.
1830 // Environment variables are not supported on Windows CE.
1831 #if !GTEST_OS_WINDOWS_MOBILE
1832 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1833  SetEnv(index_var_, "4");
1834  SetEnv(total_var_, "22");
1835  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1836  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1837 
1838  SetEnv(index_var_, "8");
1839  SetEnv(total_var_, "9");
1840  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1841  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1842 
1843  SetEnv(index_var_, "0");
1844  SetEnv(total_var_, "9");
1845  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1846  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1847 }
1848 #endif // !GTEST_OS_WINDOWS_MOBILE
1849 
1850 // Tests that we exit in error if the sharding values are not valid.
1851 
1852 typedef ShouldShardTest ShouldShardDeathTest;
1853 
1854 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1855  SetEnv(index_var_, "4");
1856  SetEnv(total_var_, "4");
1857  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1858 
1859  SetEnv(index_var_, "4");
1860  SetEnv(total_var_, "-2");
1861  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1862 
1863  SetEnv(index_var_, "5");
1864  SetEnv(total_var_, "");
1865  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1866 
1867  SetEnv(index_var_, "");
1868  SetEnv(total_var_, "5");
1869  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1870 }
1871 
1872 // Tests that ShouldRunTestOnShard is a partition when 5
1873 // shards are used.
1874 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1875  // Choose an arbitrary number of tests and shards.
1876  const int num_tests = 17;
1877  const int num_shards = 5;
1878 
1879  // Check partitioning: each test should be on exactly 1 shard.
1880  for (int test_id = 0; test_id < num_tests; test_id++) {
1881  int prev_selected_shard_index = -1;
1882  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1883  if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1884  if (prev_selected_shard_index < 0) {
1885  prev_selected_shard_index = shard_index;
1886  } else {
1887  ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1888  << shard_index << " are both selected to run test " << test_id;
1889  }
1890  }
1891  }
1892  }
1893 
1894  // Check balance: This is not required by the sharding protocol, but is a
1895  // desirable property for performance.
1896  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1897  int num_tests_on_shard = 0;
1898  for (int test_id = 0; test_id < num_tests; test_id++) {
1899  num_tests_on_shard +=
1900  ShouldRunTestOnShard(num_shards, shard_index, test_id);
1901  }
1902  EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1903  }
1904 }
1905 
1906 // For the same reason we are not explicitly testing everything in the
1907 // Test class, there are no separate tests for the following classes
1908 // (except for some trivial cases):
1909 //
1910 // TestCase, UnitTest, UnitTestResultPrinter.
1911 //
1912 // Similarly, there are no separate tests for the following macros:
1913 //
1914 // TEST, TEST_F, RUN_ALL_TESTS
1915 
1916 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1917  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1918  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1919 }
1920 
1921 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1922  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1923  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1924 }
1925 
1926 // When a property using a reserved key is supplied to this function, it
1927 // tests that a non-fatal failure is added, a fatal failure is not added,
1928 // and that the property is not recorded.
1929 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1930  const TestResult& test_result, const char* key) {
1931  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1932  ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1933  << "' recorded unexpectedly.";
1934 }
1935 
1936 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1937  const char* key) {
1938  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1939  ASSERT_TRUE(test_info != NULL);
1940  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1941  key);
1942 }
1943 
1944 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1945  const char* key) {
1946  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1947  ASSERT_TRUE(test_case != NULL);
1948  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1949  test_case->ad_hoc_test_result(), key);
1950 }
1951 
1952 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1953  const char* key) {
1954  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1955  UnitTest::GetInstance()->ad_hoc_test_result(), key);
1956 }
1957 
1958 // Tests that property recording functions in UnitTest outside of tests
1959 // functions correcly. Creating a separate instance of UnitTest ensures it
1960 // is in a state similar to the UnitTest's singleton's between tests.
1961 class UnitTestRecordPropertyTest :
1963  public:
1964  static void SetUpTestCase() {
1965  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1966  "disabled");
1967  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1968  "errors");
1969  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1970  "failures");
1971  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1972  "name");
1973  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1974  "tests");
1975  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1976  "time");
1977 
1978  Test::RecordProperty("test_case_key_1", "1");
1979  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1980  ASSERT_TRUE(test_case != NULL);
1981 
1983  EXPECT_STREQ("test_case_key_1",
1984  test_case->ad_hoc_test_result().GetTestProperty(0).key());
1985  EXPECT_STREQ("1",
1986  test_case->ad_hoc_test_result().GetTestProperty(0).value());
1987  }
1988 };
1989 
1990 // Tests TestResult has the expected property when added.
1991 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
1992  UnitTestRecordProperty("key_1", "1");
1993 
1994  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
1995 
1996  EXPECT_STREQ("key_1",
1997  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
1998  EXPECT_STREQ("1",
1999  unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2000 }
2001 
2002 // Tests TestResult has multiple properties when added.
2003 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2004  UnitTestRecordProperty("key_1", "1");
2005  UnitTestRecordProperty("key_2", "2");
2006 
2007  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2008 
2009  EXPECT_STREQ("key_1",
2010  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2011  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2012 
2013  EXPECT_STREQ("key_2",
2014  unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2015  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2016 }
2017 
2018 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
2019 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2020  UnitTestRecordProperty("key_1", "1");
2021  UnitTestRecordProperty("key_2", "2");
2022  UnitTestRecordProperty("key_1", "12");
2023  UnitTestRecordProperty("key_2", "22");
2024 
2025  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2026 
2027  EXPECT_STREQ("key_1",
2028  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2029  EXPECT_STREQ("12",
2030  unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2031 
2032  EXPECT_STREQ("key_2",
2033  unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2034  EXPECT_STREQ("22",
2035  unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2036 }
2037 
2038 TEST_F(UnitTestRecordPropertyTest,
2039  AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2040  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2041  "name");
2042  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2043  "value_param");
2044  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2045  "type_param");
2046  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2047  "status");
2048  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2049  "time");
2050  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2051  "classname");
2052 }
2053 
2054 TEST_F(UnitTestRecordPropertyTest,
2055  AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2057  Test::RecordProperty("name", "1"),
2058  "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2059  " are reserved");
2060 }
2061 
2062 class UnitTestRecordPropertyTestEnvironment : public Environment {
2063  public:
2064  virtual void TearDown() {
2065  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2066  "tests");
2067  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2068  "failures");
2069  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2070  "disabled");
2071  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2072  "errors");
2073  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2074  "name");
2075  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2076  "timestamp");
2077  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2078  "time");
2079  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2080  "random_seed");
2081  }
2082 };
2083 
2084 // This will test property recording outside of any test or test case.
2085 static Environment* record_property_env =
2086  AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2087 
2088 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2089 // of various arities. They do not attempt to be exhaustive. Rather,
2090 // view them as smoke tests that can be easily reviewed and verified.
2091 // A more complete set of tests for predicate assertions can be found
2092 // in gtest_pred_impl_unittest.cc.
2093 
2094 // First, some predicates and predicate-formatters needed by the tests.
2095 
2096 // Returns true iff the argument is an even number.
2097 bool IsEven(int n) {
2098  return (n % 2) == 0;
2099 }
2100 
2101 // A functor that returns true iff the argument is an even number.
2102 struct IsEvenFunctor {
2103  bool operator()(int n) { return IsEven(n); }
2104 };
2105 
2106 // A predicate-formatter function that asserts the argument is an even
2107 // number.
2108 AssertionResult AssertIsEven(const char* expr, int n) {
2109  if (IsEven(n)) {
2110  return AssertionSuccess();
2111  }
2112 
2113  Message msg;
2114  msg << expr << " evaluates to " << n << ", which is not even.";
2115  return AssertionFailure(msg);
2116 }
2117 
2118 // A predicate function that returns AssertionResult for use in
2119 // EXPECT/ASSERT_TRUE/FALSE.
2120 AssertionResult ResultIsEven(int n) {
2121  if (IsEven(n))
2122  return AssertionSuccess() << n << " is even";
2123  else
2124  return AssertionFailure() << n << " is odd";
2125 }
2126 
2127 // A predicate function that returns AssertionResult but gives no
2128 // explanation why it succeeds. Needed for testing that
2129 // EXPECT/ASSERT_FALSE handles such functions correctly.
2130 AssertionResult ResultIsEvenNoExplanation(int n) {
2131  if (IsEven(n))
2132  return AssertionSuccess();
2133  else
2134  return AssertionFailure() << n << " is odd";
2135 }
2136 
2137 // A predicate-formatter functor that asserts the argument is an even
2138 // number.
2139 struct AssertIsEvenFunctor {
2140  AssertionResult operator()(const char* expr, int n) {
2141  return AssertIsEven(expr, n);
2142  }
2143 };
2144 
2145 // Returns true iff the sum of the arguments is an even number.
2146 bool SumIsEven2(int n1, int n2) {
2147  return IsEven(n1 + n2);
2148 }
2149 
2150 // A functor that returns true iff the sum of the arguments is an even
2151 // number.
2152 struct SumIsEven3Functor {
2153  bool operator()(int n1, int n2, int n3) {
2154  return IsEven(n1 + n2 + n3);
2155  }
2156 };
2157 
2158 // A predicate-formatter function that asserts the sum of the
2159 // arguments is an even number.
2160 AssertionResult AssertSumIsEven4(
2161  const char* e1, const char* e2, const char* e3, const char* e4,
2162  int n1, int n2, int n3, int n4) {
2163  const int sum = n1 + n2 + n3 + n4;
2164  if (IsEven(sum)) {
2165  return AssertionSuccess();
2166  }
2167 
2168  Message msg;
2169  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2170  << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2171  << ") evaluates to " << sum << ", which is not even.";
2172  return AssertionFailure(msg);
2173 }
2174 
2175 // A predicate-formatter functor that asserts the sum of the arguments
2176 // is an even number.
2177 struct AssertSumIsEven5Functor {
2178  AssertionResult operator()(
2179  const char* e1, const char* e2, const char* e3, const char* e4,
2180  const char* e5, int n1, int n2, int n3, int n4, int n5) {
2181  const int sum = n1 + n2 + n3 + n4 + n5;
2182  if (IsEven(sum)) {
2183  return AssertionSuccess();
2184  }
2185 
2186  Message msg;
2187  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2188  << " ("
2189  << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2190  << ") evaluates to " << sum << ", which is not even.";
2191  return AssertionFailure(msg);
2192  }
2193 };
2194 
2195 
2196 // Tests unary predicate assertions.
2197 
2198 // Tests unary predicate assertions that don't use a custom formatter.
2199 TEST(Pred1Test, WithoutFormat) {
2200  // Success cases.
2201  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2202  ASSERT_PRED1(IsEven, 4);
2203 
2204  // Failure cases.
2205  EXPECT_NONFATAL_FAILURE({ // NOLINT
2206  EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2207  }, "This failure is expected.");
2208  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2209  "evaluates to false");
2210 }
2211 
2212 // Tests unary predicate assertions that use a custom formatter.
2213 TEST(Pred1Test, WithFormat) {
2214  // Success cases.
2215  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2216  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2217  << "This failure is UNEXPECTED!";
2218 
2219  // Failure cases.
2220  const int n = 5;
2221  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2222  "n evaluates to 5, which is not even.");
2223  EXPECT_FATAL_FAILURE({ // NOLINT
2224  ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2225  }, "This failure is expected.");
2226 }
2227 
2228 // Tests that unary predicate assertions evaluates their arguments
2229 // exactly once.
2230 TEST(Pred1Test, SingleEvaluationOnFailure) {
2231  // A success case.
2232  static int n = 0;
2233  EXPECT_PRED1(IsEven, n++);
2234  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2235 
2236  // A failure case.
2237  EXPECT_FATAL_FAILURE({ // NOLINT
2238  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2239  << "This failure is expected.";
2240  }, "This failure is expected.");
2241  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2242 }
2243 
2244 
2245 // Tests predicate assertions whose arity is >= 2.
2246 
2247 // Tests predicate assertions that don't use a custom formatter.
2248 TEST(PredTest, WithoutFormat) {
2249  // Success cases.
2250  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2251  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2252 
2253  // Failure cases.
2254  const int n1 = 1;
2255  const int n2 = 2;
2256  EXPECT_NONFATAL_FAILURE({ // NOLINT
2257  EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2258  }, "This failure is expected.");
2259  EXPECT_FATAL_FAILURE({ // NOLINT
2260  ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2261  }, "evaluates to false");
2262 }
2263 
2264 // Tests predicate assertions that use a custom formatter.
2265 TEST(PredTest, WithFormat) {
2266  // Success cases.
2267  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2268  "This failure is UNEXPECTED!";
2269  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2270 
2271  // Failure cases.
2272  const int n1 = 1;
2273  const int n2 = 2;
2274  const int n3 = 4;
2275  const int n4 = 6;
2276  EXPECT_NONFATAL_FAILURE({ // NOLINT
2277  EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2278  }, "evaluates to 13, which is not even.");
2279  EXPECT_FATAL_FAILURE({ // NOLINT
2280  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2281  << "This failure is expected.";
2282  }, "This failure is expected.");
2283 }
2284 
2285 // Tests that predicate assertions evaluates their arguments
2286 // exactly once.
2287 TEST(PredTest, SingleEvaluationOnFailure) {
2288  // A success case.
2289  int n1 = 0;
2290  int n2 = 0;
2291  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2292  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2293  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2294 
2295  // Another success case.
2296  n1 = n2 = 0;
2297  int n3 = 0;
2298  int n4 = 0;
2299  int n5 = 0;
2300  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2301  n1++, n2++, n3++, n4++, n5++)
2302  << "This failure is UNEXPECTED!";
2303  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2304  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2305  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2306  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2307  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2308 
2309  // A failure case.
2310  n1 = n2 = n3 = 0;
2311  EXPECT_NONFATAL_FAILURE({ // NOLINT
2312  EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2313  << "This failure is expected.";
2314  }, "This failure is expected.");
2315  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2316  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2317  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2318 
2319  // Another failure case.
2320  n1 = n2 = n3 = n4 = 0;
2321  EXPECT_NONFATAL_FAILURE({ // NOLINT
2322  EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2323  }, "evaluates to 1, which is not even.");
2324  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2325  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2326  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2327  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2328 }
2329 
2330 
2331 // Some helper functions for testing using overloaded/template
2332 // functions with ASSERT_PREDn and EXPECT_PREDn.
2333 
2334 bool IsPositive(double x) {
2335  return x > 0;
2336 }
2337 
2338 template <typename T>
2339 bool IsNegative(T x) {
2340  return x < 0;
2341 }
2342 
2343 template <typename T1, typename T2>
2344 bool GreaterThan(T1 x1, T2 x2) {
2345  return x1 > x2;
2346 }
2347 
2348 // Tests that overloaded functions can be used in *_PRED* as long as
2349 // their types are explicitly specified.
2350 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2351  // C++Builder requires C-style casts rather than static_cast.
2352  EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2353  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2354 }
2355 
2356 // Tests that template functions can be used in *_PRED* as long as
2357 // their types are explicitly specified.
2358 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2359  EXPECT_PRED1(IsNegative<int>, -5);
2360  // Makes sure that we can handle templates with more than one
2361  // parameter.
2362  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2363 }
2364 
2365 
2366 // Some helper functions for testing using overloaded/template
2367 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2368 
2369 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2370  return n > 0 ? AssertionSuccess() :
2371  AssertionFailure(Message() << "Failure");
2372 }
2373 
2374 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2375  return x > 0 ? AssertionSuccess() :
2376  AssertionFailure(Message() << "Failure");
2377 }
2378 
2379 template <typename T>
2380 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2381  return x < 0 ? AssertionSuccess() :
2382  AssertionFailure(Message() << "Failure");
2383 }
2384 
2385 template <typename T1, typename T2>
2386 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2387  const T1& x1, const T2& x2) {
2388  return x1 == x2 ? AssertionSuccess() :
2389  AssertionFailure(Message() << "Failure");
2390 }
2391 
2392 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2393 // without explicitly specifying their types.
2394 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2395  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2396  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2397 }
2398 
2399 // Tests that template functions can be used in *_PRED_FORMAT* without
2400 // explicitly specifying their types.
2401 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2402  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2403  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2404 }
2405 
2406 
2407 // Tests string assertions.
2408 
2409 // Tests ASSERT_STREQ with non-NULL arguments.
2410 TEST(StringAssertionTest, ASSERT_STREQ) {
2411  const char * const p1 = "good";
2412  ASSERT_STREQ(p1, p1);
2413 
2414  // Let p2 have the same content as p1, but be at a different address.
2415  const char p2[] = "good";
2416  ASSERT_STREQ(p1, p2);
2417 
2418  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2419  "Expected: \"bad\"");
2420 }
2421 
2422 // Tests ASSERT_STREQ with NULL arguments.
2423 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2424  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2425  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2426  "non-null");
2427 }
2428 
2429 // Tests ASSERT_STREQ with NULL arguments.
2430 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2431  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2432  "non-null");
2433 }
2434 
2435 // Tests ASSERT_STRNE.
2436 TEST(StringAssertionTest, ASSERT_STRNE) {
2437  ASSERT_STRNE("hi", "Hi");
2438  ASSERT_STRNE("Hi", NULL);
2439  ASSERT_STRNE(NULL, "Hi");
2440  ASSERT_STRNE("", NULL);
2441  ASSERT_STRNE(NULL, "");
2442  ASSERT_STRNE("", "Hi");
2443  ASSERT_STRNE("Hi", "");
2444  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2445  "\"Hi\" vs \"Hi\"");
2446 }
2447 
2448 // Tests ASSERT_STRCASEEQ.
2449 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2450  ASSERT_STRCASEEQ("hi", "Hi");
2451  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2452 
2453  ASSERT_STRCASEEQ("", "");
2455  "(ignoring case)");
2456 }
2457 
2458 // Tests ASSERT_STRCASENE.
2459 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2460  ASSERT_STRCASENE("hi1", "Hi2");
2461  ASSERT_STRCASENE("Hi", NULL);
2462  ASSERT_STRCASENE(NULL, "Hi");
2463  ASSERT_STRCASENE("", NULL);
2464  ASSERT_STRCASENE(NULL, "");
2465  ASSERT_STRCASENE("", "Hi");
2466  ASSERT_STRCASENE("Hi", "");
2468  "(ignoring case)");
2469 }
2470 
2471 // Tests *_STREQ on wide strings.
2472 TEST(StringAssertionTest, STREQ_Wide) {
2473  // NULL strings.
2474  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2475 
2476  // Empty strings.
2477  ASSERT_STREQ(L"", L"");
2478 
2479  // Non-null vs NULL.
2480  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2481  "non-null");
2482 
2483  // Equal strings.
2484  EXPECT_STREQ(L"Hi", L"Hi");
2485 
2486  // Unequal strings.
2487  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2488  "Abc");
2489 
2490  // Strings containing wide characters.
2491  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2492  "abc");
2493 
2494  // The streaming variation.
2495  EXPECT_NONFATAL_FAILURE({ // NOLINT
2496  EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2497  }, "Expected failure");
2498 }
2499 
2500 // Tests *_STRNE on wide strings.
2501 TEST(StringAssertionTest, STRNE_Wide) {
2502  // NULL strings.
2503  EXPECT_NONFATAL_FAILURE({ // NOLINT
2504  EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2505  }, "");
2506 
2507  // Empty strings.
2509  "L\"\"");
2510 
2511  // Non-null vs NULL.
2512  ASSERT_STRNE(L"non-null", NULL);
2513 
2514  // Equal strings.
2515  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2516  "L\"Hi\"");
2517 
2518  // Unequal strings.
2519  EXPECT_STRNE(L"abc", L"Abc");
2520 
2521  // Strings containing wide characters.
2522  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2523  "abc");
2524 
2525  // The streaming variation.
2526  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2527 }
2528 
2529 // Tests for ::testing::IsSubstring().
2530 
2531 // Tests that IsSubstring() returns the correct result when the input
2532 // argument type is const char*.
2533 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2534  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2535  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2536  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2537 
2538  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2539  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2540 }
2541 
2542 // Tests that IsSubstring() returns the correct result when the input
2543 // argument type is const wchar_t*.
2544 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2545  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2546  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2547  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2548 
2549  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2550  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2551 }
2552 
2553 // Tests that IsSubstring() generates the correct message when the input
2554 // argument type is const char*.
2555 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2556  EXPECT_STREQ("Value of: needle_expr\n"
2557  " Actual: \"needle\"\n"
2558  "Expected: a substring of haystack_expr\n"
2559  "Which is: \"haystack\"",
2560  IsSubstring("needle_expr", "haystack_expr",
2561  "needle", "haystack").failure_message());
2562 }
2563 
2564 // Tests that IsSubstring returns the correct result when the input
2565 // argument type is ::std::string.
2566 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2567  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2568  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2569 }
2570 
2571 #if GTEST_HAS_STD_WSTRING
2572 // Tests that IsSubstring returns the correct result when the input
2573 // argument type is ::std::wstring.
2574 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2575  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2576  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2577 }
2578 
2579 // Tests that IsSubstring() generates the correct message when the input
2580 // argument type is ::std::wstring.
2581 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2582  EXPECT_STREQ("Value of: needle_expr\n"
2583  " Actual: L\"needle\"\n"
2584  "Expected: a substring of haystack_expr\n"
2585  "Which is: L\"haystack\"",
2586  IsSubstring(
2587  "needle_expr", "haystack_expr",
2588  ::std::wstring(L"needle"), L"haystack").failure_message());
2589 }
2590 
2591 #endif // GTEST_HAS_STD_WSTRING
2592 
2593 // Tests for ::testing::IsNotSubstring().
2594 
2595 // Tests that IsNotSubstring() returns the correct result when the input
2596 // argument type is const char*.
2597 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2598  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2599  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2600 }
2601 
2602 // Tests that IsNotSubstring() returns the correct result when the input
2603 // argument type is const wchar_t*.
2604 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2605  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2606  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2607 }
2608 
2609 // Tests that IsNotSubstring() generates the correct message when the input
2610 // argument type is const wchar_t*.
2611 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2612  EXPECT_STREQ("Value of: needle_expr\n"
2613  " Actual: L\"needle\"\n"
2614  "Expected: not a substring of haystack_expr\n"
2615  "Which is: L\"two needles\"",
2617  "needle_expr", "haystack_expr",
2618  L"needle", L"two needles").failure_message());
2619 }
2620 
2621 // Tests that IsNotSubstring returns the correct result when the input
2622 // argument type is ::std::string.
2623 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2624  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2625  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2626 }
2627 
2628 // Tests that IsNotSubstring() generates the correct message when the input
2629 // argument type is ::std::string.
2630 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2631  EXPECT_STREQ("Value of: needle_expr\n"
2632  " Actual: \"needle\"\n"
2633  "Expected: not a substring of haystack_expr\n"
2634  "Which is: \"two needles\"",
2636  "needle_expr", "haystack_expr",
2637  ::std::string("needle"), "two needles").failure_message());
2638 }
2639 
2640 #if GTEST_HAS_STD_WSTRING
2641 
2642 // Tests that IsNotSubstring returns the correct result when the input
2643 // argument type is ::std::wstring.
2644 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2645  EXPECT_FALSE(
2646  IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2647  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2648 }
2649 
2650 #endif // GTEST_HAS_STD_WSTRING
2651 
2652 // Tests floating-point assertions.
2653 
2654 template <typename RawType>
2655 class FloatingPointTest : public Test {
2656  protected:
2657  // Pre-calculated numbers to be used by the tests.
2658  struct TestValues {
2659  RawType close_to_positive_zero;
2660  RawType close_to_negative_zero;
2661  RawType further_from_negative_zero;
2662 
2663  RawType close_to_one;
2664  RawType further_from_one;
2665 
2666  RawType infinity;
2667  RawType close_to_infinity;
2668  RawType further_from_infinity;
2669 
2670  RawType nan1;
2671  RawType nan2;
2672  };
2673 
2674  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2675  typedef typename Floating::Bits Bits;
2676 
2677  virtual void SetUp() {
2678  const size_t max_ulps = Floating::kMaxUlps;
2679 
2680  // The bits that represent 0.0.
2681  const Bits zero_bits = Floating(0).bits();
2682 
2683  // Makes some numbers close to 0.0.
2684  values_.close_to_positive_zero = Floating::ReinterpretBits(
2685  zero_bits + max_ulps/2);
2686  values_.close_to_negative_zero = -Floating::ReinterpretBits(
2687  zero_bits + max_ulps - max_ulps/2);
2688  values_.further_from_negative_zero = -Floating::ReinterpretBits(
2689  zero_bits + max_ulps + 1 - max_ulps/2);
2690 
2691  // The bits that represent 1.0.
2692  const Bits one_bits = Floating(1).bits();
2693 
2694  // Makes some numbers close to 1.0.
2695  values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2696  values_.further_from_one = Floating::ReinterpretBits(
2697  one_bits + max_ulps + 1);
2698 
2699  // +infinity.
2700  values_.infinity = Floating::Infinity();
2701 
2702  // The bits that represent +infinity.
2703  const Bits infinity_bits = Floating(values_.infinity).bits();
2704 
2705  // Makes some numbers close to infinity.
2706  values_.close_to_infinity = Floating::ReinterpretBits(
2707  infinity_bits - max_ulps);
2708  values_.further_from_infinity = Floating::ReinterpretBits(
2709  infinity_bits - max_ulps - 1);
2710 
2711  // Makes some NAN's. Sets the most significant bit of the fraction so that
2712  // our NaN's are quiet; trying to process a signaling NaN would raise an
2713  // exception if our environment enables floating point exceptions.
2714  values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2715  | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2716  values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2717  | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2718  }
2719 
2720  void TestSize() {
2721  EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2722  }
2723 
2724  static TestValues values_;
2725 };
2726 
2727 template <typename RawType>
2728 typename FloatingPointTest<RawType>::TestValues
2729  FloatingPointTest<RawType>::values_;
2730 
2731 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2732 typedef FloatingPointTest<float> FloatTest;
2733 
2734 // Tests that the size of Float::Bits matches the size of float.
2735 TEST_F(FloatTest, Size) {
2736  TestSize();
2737 }
2738 
2739 // Tests comparing with +0 and -0.
2740 TEST_F(FloatTest, Zeros) {
2741  EXPECT_FLOAT_EQ(0.0, -0.0);
2743  "1.0");
2745  "1.5");
2746 }
2747 
2748 // Tests comparing numbers close to 0.
2749 //
2750 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2751 // overflow occurs when comparing numbers whose absolute value is very
2752 // small.
2753 TEST_F(FloatTest, AlmostZeros) {
2754  // In C++Builder, names within local classes (such as used by
2755  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2756  // scoping class. Use a static local alias as a workaround.
2757  // We use the assignment syntax since some compilers, like Sun Studio,
2758  // don't allow initializing references using construction syntax
2759  // (parentheses).
2760  static const FloatTest::TestValues& v = this->values_;
2761 
2762  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2763  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2764  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2765 
2766  EXPECT_FATAL_FAILURE({ // NOLINT
2767  ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2768  v.further_from_negative_zero);
2769  }, "v.further_from_negative_zero");
2770 }
2771 
2772 // Tests comparing numbers close to each other.
2773 TEST_F(FloatTest, SmallDiff) {
2774  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2775  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2776  "values_.further_from_one");
2777 }
2778 
2779 // Tests comparing numbers far apart.
2780 TEST_F(FloatTest, LargeDiff) {
2782  "3.0");
2783 }
2784 
2785 // Tests comparing with infinity.
2786 //
2787 // This ensures that no overflow occurs when comparing numbers whose
2788 // absolute value is very large.
2789 TEST_F(FloatTest, Infinity) {
2790  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2791  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2792 #if !GTEST_OS_SYMBIAN
2793  // Nokia's STLport crashes if we try to output infinity or NaN.
2794  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2795  "-values_.infinity");
2796 
2797  // This is interesting as the representations of infinity and nan1
2798  // are only 1 DLP apart.
2799  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2800  "values_.nan1");
2801 #endif // !GTEST_OS_SYMBIAN
2802 }
2803 
2804 // Tests that comparing with NAN always returns false.
2805 TEST_F(FloatTest, NaN) {
2806 #if !GTEST_OS_SYMBIAN
2807 // Nokia's STLport crashes if we try to output infinity or NaN.
2808 
2809  // In C++Builder, names within local classes (such as used by
2810  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2811  // scoping class. Use a static local alias as a workaround.
2812  // We use the assignment syntax since some compilers, like Sun Studio,
2813  // don't allow initializing references using construction syntax
2814  // (parentheses).
2815  static const FloatTest::TestValues& v = this->values_;
2816 
2817  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2818  "v.nan1");
2819  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2820  "v.nan2");
2822  "v.nan1");
2823 
2824  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2825  "v.infinity");
2826 #endif // !GTEST_OS_SYMBIAN
2827 }
2828 
2829 // Tests that *_FLOAT_EQ are reflexive.
2830 TEST_F(FloatTest, Reflexive) {
2831  EXPECT_FLOAT_EQ(0.0, 0.0);
2832  EXPECT_FLOAT_EQ(1.0, 1.0);
2833  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2834 }
2835 
2836 // Tests that *_FLOAT_EQ are commutative.
2837 TEST_F(FloatTest, Commutative) {
2838  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2839  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2840 
2841  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2842  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2843  "1.0");
2844 }
2845 
2846 // Tests EXPECT_NEAR.
2847 TEST_F(FloatTest, EXPECT_NEAR) {
2848  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2849  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2850  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2851  "The difference between 1.0f and 1.5f is 0.5, "
2852  "which exceeds 0.25f");
2853  // To work around a bug in gcc 2.95.0, there is intentionally no
2854  // space after the first comma in the previous line.
2855 }
2856 
2857 // Tests ASSERT_NEAR.
2858 TEST_F(FloatTest, ASSERT_NEAR) {
2859  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2860  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2861  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2862  "The difference between 1.0f and 1.5f is 0.5, "
2863  "which exceeds 0.25f");
2864  // To work around a bug in gcc 2.95.0, there is intentionally no
2865  // space after the first comma in the previous line.
2866 }
2867 
2868 // Tests the cases where FloatLE() should succeed.
2869 TEST_F(FloatTest, FloatLESucceeds) {
2870  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2871  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2872 
2873  // or when val1 is greater than, but almost equals to, val2.
2874  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2875 }
2876 
2877 // Tests the cases where FloatLE() should fail.
2878 TEST_F(FloatTest, FloatLEFails) {
2879  // When val1 is greater than val2 by a large margin,
2881  "(2.0f) <= (1.0f)");
2882 
2883  // or by a small yet non-negligible margin,
2884  EXPECT_NONFATAL_FAILURE({ // NOLINT
2885  EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2886  }, "(values_.further_from_one) <= (1.0f)");
2887 
2888 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2889  // Nokia's STLport crashes if we try to output infinity or NaN.
2890  // C++Builder gives bad results for ordered comparisons involving NaNs
2891  // due to compiler bugs.
2892  EXPECT_NONFATAL_FAILURE({ // NOLINT
2893  EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2894  }, "(values_.nan1) <= (values_.infinity)");
2895  EXPECT_NONFATAL_FAILURE({ // NOLINT
2896  EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2897  }, "(-values_.infinity) <= (values_.nan1)");
2898  EXPECT_FATAL_FAILURE({ // NOLINT
2899  ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2900  }, "(values_.nan1) <= (values_.nan1)");
2901 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2902 }
2903 
2904 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2905 typedef FloatingPointTest<double> DoubleTest;
2906 
2907 // Tests that the size of Double::Bits matches the size of double.
2908 TEST_F(DoubleTest, Size) {
2909  TestSize();
2910 }
2911 
2912 // Tests comparing with +0 and -0.
2913 TEST_F(DoubleTest, Zeros) {
2914  EXPECT_DOUBLE_EQ(0.0, -0.0);
2916  "1.0");
2918  "1.0");
2919 }
2920 
2921 // Tests comparing numbers close to 0.
2922 //
2923 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2924 // overflow occurs when comparing numbers whose absolute value is very
2925 // small.
2926 TEST_F(DoubleTest, AlmostZeros) {
2927  // In C++Builder, names within local classes (such as used by
2928  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2929  // scoping class. Use a static local alias as a workaround.
2930  // We use the assignment syntax since some compilers, like Sun Studio,
2931  // don't allow initializing references using construction syntax
2932  // (parentheses).
2933  static const DoubleTest::TestValues& v = this->values_;
2934 
2935  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2936  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2937  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2938 
2939  EXPECT_FATAL_FAILURE({ // NOLINT
2940  ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2941  v.further_from_negative_zero);
2942  }, "v.further_from_negative_zero");
2943 }
2944 
2945 // Tests comparing numbers close to each other.
2946 TEST_F(DoubleTest, SmallDiff) {
2947  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2948  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2949  "values_.further_from_one");
2950 }
2951 
2952 // Tests comparing numbers far apart.
2953 TEST_F(DoubleTest, LargeDiff) {
2955  "3.0");
2956 }
2957 
2958 // Tests comparing with infinity.
2959 //
2960 // This ensures that no overflow occurs when comparing numbers whose
2961 // absolute value is very large.
2962 TEST_F(DoubleTest, Infinity) {
2963  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2964  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2965 #if !GTEST_OS_SYMBIAN
2966  // Nokia's STLport crashes if we try to output infinity or NaN.
2967  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2968  "-values_.infinity");
2969 
2970  // This is interesting as the representations of infinity_ and nan1_
2971  // are only 1 DLP apart.
2972  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2973  "values_.nan1");
2974 #endif // !GTEST_OS_SYMBIAN
2975 }
2976 
2977 // Tests that comparing with NAN always returns false.
2978 TEST_F(DoubleTest, NaN) {
2979 #if !GTEST_OS_SYMBIAN
2980  // In C++Builder, names within local classes (such as used by
2981  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2982  // scoping class. Use a static local alias as a workaround.
2983  // We use the assignment syntax since some compilers, like Sun Studio,
2984  // don't allow initializing references using construction syntax
2985  // (parentheses).
2986  static const DoubleTest::TestValues& v = this->values_;
2987 
2988  // Nokia's STLport crashes if we try to output infinity or NaN.
2989  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
2990  "v.nan1");
2991  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
2992  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
2993  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
2994  "v.infinity");
2995 #endif // !GTEST_OS_SYMBIAN
2996 }
2997 
2998 // Tests that *_DOUBLE_EQ are reflexive.
2999 TEST_F(DoubleTest, Reflexive) {
3000  EXPECT_DOUBLE_EQ(0.0, 0.0);
3001  EXPECT_DOUBLE_EQ(1.0, 1.0);
3002 #if !GTEST_OS_SYMBIAN
3003  // Nokia's STLport crashes if we try to output infinity or NaN.
3004  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3005 #endif // !GTEST_OS_SYMBIAN
3006 }
3007 
3008 // Tests that *_DOUBLE_EQ are commutative.
3009 TEST_F(DoubleTest, Commutative) {
3010  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3011  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3012 
3013  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3014  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3015  "1.0");
3016 }
3017 
3018 // Tests EXPECT_NEAR.
3019 TEST_F(DoubleTest, EXPECT_NEAR) {
3020  EXPECT_NEAR(-1.0, -1.1, 0.2);
3021  EXPECT_NEAR(2.0, 3.0, 1.0);
3022  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3023  "The difference between 1.0 and 1.5 is 0.5, "
3024  "which exceeds 0.25");
3025  // To work around a bug in gcc 2.95.0, there is intentionally no
3026  // space after the first comma in the previous statement.
3027 }
3028 
3029 // Tests ASSERT_NEAR.
3030 TEST_F(DoubleTest, ASSERT_NEAR) {
3031  ASSERT_NEAR(-1.0, -1.1, 0.2);
3032  ASSERT_NEAR(2.0, 3.0, 1.0);
3033  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3034  "The difference between 1.0 and 1.5 is 0.5, "
3035  "which exceeds 0.25");
3036  // To work around a bug in gcc 2.95.0, there is intentionally no
3037  // space after the first comma in the previous statement.
3038 }
3039 
3040 // Tests the cases where DoubleLE() should succeed.
3041 TEST_F(DoubleTest, DoubleLESucceeds) {
3042  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3043  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3044 
3045  // or when val1 is greater than, but almost equals to, val2.
3046  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3047 }
3048 
3049 // Tests the cases where DoubleLE() should fail.
3050 TEST_F(DoubleTest, DoubleLEFails) {
3051  // When val1 is greater than val2 by a large margin,
3053  "(2.0) <= (1.0)");
3054 
3055  // or by a small yet non-negligible margin,
3056  EXPECT_NONFATAL_FAILURE({ // NOLINT
3057  EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3058  }, "(values_.further_from_one) <= (1.0)");
3059 
3060 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3061  // Nokia's STLport crashes if we try to output infinity or NaN.
3062  // C++Builder gives bad results for ordered comparisons involving NaNs
3063  // due to compiler bugs.
3064  EXPECT_NONFATAL_FAILURE({ // NOLINT
3065  EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3066  }, "(values_.nan1) <= (values_.infinity)");
3067  EXPECT_NONFATAL_FAILURE({ // NOLINT
3068  EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3069  }, " (-values_.infinity) <= (values_.nan1)");
3070  EXPECT_FATAL_FAILURE({ // NOLINT
3071  ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3072  }, "(values_.nan1) <= (values_.nan1)");
3073 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3074 }
3075 
3076 
3077 // Verifies that a test or test case whose name starts with DISABLED_ is
3078 // not run.
3079 
3080 // A test whose name starts with DISABLED_.
3081 // Should not run.
3082 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3083  FAIL() << "Unexpected failure: Disabled test should not be run.";
3084 }
3085 
3086 // A test whose name does not start with DISABLED_.
3087 // Should run.
3088 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3089  EXPECT_EQ(1, 1);
3090 }
3091 
3092 // A test case whose name starts with DISABLED_.
3093 // Should not run.
3094 TEST(DISABLED_TestCase, TestShouldNotRun) {
3095  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3096 }
3097 
3098 // A test case and test whose names start with DISABLED_.
3099 // Should not run.
3100 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3101  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3102 }
3103 
3104 // Check that when all tests in a test case are disabled, SetupTestCase() and
3105 // TearDownTestCase() are not called.
3106 class DisabledTestsTest : public Test {
3107  protected:
3108  static void SetUpTestCase() {
3109  FAIL() << "Unexpected failure: All tests disabled in test case. "
3110  "SetupTestCase() should not be called.";
3111  }
3112 
3113  static void TearDownTestCase() {
3114  FAIL() << "Unexpected failure: All tests disabled in test case. "
3115  "TearDownTestCase() should not be called.";
3116  }
3117 };
3118 
3119 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3120  FAIL() << "Unexpected failure: Disabled test should not be run.";
3121 }
3122 
3123 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3124  FAIL() << "Unexpected failure: Disabled test should not be run.";
3125 }
3126 
3127 // Tests that disabled typed tests aren't run.
3128 
3129 #if GTEST_HAS_TYPED_TEST
3130 
3131 template <typename T>
3132 class TypedTest : public Test {
3133 };
3134 
3135 typedef testing::Types<int, double> NumericTypes;
3136 TYPED_TEST_CASE(TypedTest, NumericTypes);
3137 
3138 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3139  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3140 }
3141 
3142 template <typename T>
3143 class DISABLED_TypedTest : public Test {
3144 };
3145 
3146 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3147 
3148 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3149  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3150 }
3151 
3152 #endif // GTEST_HAS_TYPED_TEST
3153 
3154 // Tests that disabled type-parameterized tests aren't run.
3155 
3156 #if GTEST_HAS_TYPED_TEST_P
3157 
3158 template <typename T>
3159 class TypedTestP : public Test {
3160 };
3161 
3162 TYPED_TEST_CASE_P(TypedTestP);
3163 
3164 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3165  FAIL() << "Unexpected failure: "
3166  << "Disabled type-parameterized test should not run.";
3167 }
3168 
3169 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3170 
3171 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3172 
3173 template <typename T>
3174 class DISABLED_TypedTestP : public Test {
3175 };
3176 
3177 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3178 
3179 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3180  FAIL() << "Unexpected failure: "
3181  << "Disabled type-parameterized test should not run.";
3182 }
3183 
3184 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3185 
3186 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3187 
3188 #endif // GTEST_HAS_TYPED_TEST_P
3189 
3190 // Tests that assertion macros evaluate their arguments exactly once.
3191 
3192 class SingleEvaluationTest : public Test {
3193  public: // Must be public and not protected due to a bug in g++ 3.4.2.
3194  // This helper function is needed by the FailedASSERT_STREQ test
3195  // below. It's public to work around C++Builder's bug with scoping local
3196  // classes.
3197  static void CompareAndIncrementCharPtrs() {
3198  ASSERT_STREQ(p1_++, p2_++);
3199  }
3200 
3201  // This helper function is needed by the FailedASSERT_NE test below. It's
3202  // public to work around C++Builder's bug with scoping local classes.
3203  static void CompareAndIncrementInts() {
3204  ASSERT_NE(a_++, b_++);
3205  }
3206 
3207  protected:
3208  SingleEvaluationTest() {
3209  p1_ = s1_;
3210  p2_ = s2_;
3211  a_ = 0;
3212  b_ = 0;
3213  }
3214 
3215  static const char* const s1_;
3216  static const char* const s2_;
3217  static const char* p1_;
3218  static const char* p2_;
3219 
3220  static int a_;
3221  static int b_;
3222 };
3223 
3224 const char* const SingleEvaluationTest::s1_ = "01234";
3225 const char* const SingleEvaluationTest::s2_ = "abcde";
3226 const char* SingleEvaluationTest::p1_;
3227 const char* SingleEvaluationTest::p2_;
3228 int SingleEvaluationTest::a_;
3229 int SingleEvaluationTest::b_;
3230 
3231 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3232 // exactly once.
3233 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3234  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3235  "p2_++");
3236  EXPECT_EQ(s1_ + 1, p1_);
3237  EXPECT_EQ(s2_ + 1, p2_);
3238 }
3239 
3240 // Tests that string assertion arguments are evaluated exactly once.
3241 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3242  // successful EXPECT_STRNE
3243  EXPECT_STRNE(p1_++, p2_++);
3244  EXPECT_EQ(s1_ + 1, p1_);
3245  EXPECT_EQ(s2_ + 1, p2_);
3246 
3247  // failed EXPECT_STRCASEEQ
3249  "ignoring case");
3250  EXPECT_EQ(s1_ + 2, p1_);
3251  EXPECT_EQ(s2_ + 2, p2_);
3252 }
3253 
3254 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3255 // once.
3256 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3257  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3258  "(a_++) != (b_++)");
3259  EXPECT_EQ(1, a_);
3260  EXPECT_EQ(1, b_);
3261 }
3262 
3263 // Tests that assertion arguments are evaluated exactly once.
3264 TEST_F(SingleEvaluationTest, OtherCases) {
3265  // successful EXPECT_TRUE
3266  EXPECT_TRUE(0 == a_++); // NOLINT
3267  EXPECT_EQ(1, a_);
3268 
3269  // failed EXPECT_TRUE
3270  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3271  EXPECT_EQ(2, a_);
3272 
3273  // successful EXPECT_GT
3274  EXPECT_GT(a_++, b_++);
3275  EXPECT_EQ(3, a_);
3276  EXPECT_EQ(1, b_);
3277 
3278  // failed EXPECT_LT
3279  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3280  EXPECT_EQ(4, a_);
3281  EXPECT_EQ(2, b_);
3282 
3283  // successful ASSERT_TRUE
3284  ASSERT_TRUE(0 < a_++); // NOLINT
3285  EXPECT_EQ(5, a_);
3286 
3287  // successful ASSERT_GT
3288  ASSERT_GT(a_++, b_++);
3289  EXPECT_EQ(6, a_);
3290  EXPECT_EQ(3, b_);
3291 }
3292 
3293 #if GTEST_HAS_EXCEPTIONS
3294 
3295 void ThrowAnInteger() {
3296  throw 1;
3297 }
3298 
3299 // Tests that assertion arguments are evaluated exactly once.
3300 TEST_F(SingleEvaluationTest, ExceptionTests) {
3301  // successful EXPECT_THROW
3302  EXPECT_THROW({ // NOLINT
3303  a_++;
3304  ThrowAnInteger();
3305  }, int);
3306  EXPECT_EQ(1, a_);
3307 
3308  // failed EXPECT_THROW, throws different
3310  a_++;
3311  ThrowAnInteger();
3312  }, bool), "throws a different type");
3313  EXPECT_EQ(2, a_);
3314 
3315  // failed EXPECT_THROW, throws nothing
3316  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3317  EXPECT_EQ(3, a_);
3318 
3319  // successful EXPECT_NO_THROW
3320  EXPECT_NO_THROW(a_++);
3321  EXPECT_EQ(4, a_);
3322 
3323  // failed EXPECT_NO_THROW
3325  a_++;
3326  ThrowAnInteger();
3327  }), "it throws");
3328  EXPECT_EQ(5, a_);
3329 
3330  // successful EXPECT_ANY_THROW
3331  EXPECT_ANY_THROW({ // NOLINT
3332  a_++;
3333  ThrowAnInteger();
3334  });
3335  EXPECT_EQ(6, a_);
3336 
3337  // failed EXPECT_ANY_THROW
3338  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3339  EXPECT_EQ(7, a_);
3340 }
3341 
3342 #endif // GTEST_HAS_EXCEPTIONS
3343 
3344 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3345 class NoFatalFailureTest : public Test {
3346  protected:
3347  void Succeeds() {}
3348  void FailsNonFatal() {
3349  ADD_FAILURE() << "some non-fatal failure";
3350  }
3351  void Fails() {
3352  FAIL() << "some fatal failure";
3353  }
3354 
3355  void DoAssertNoFatalFailureOnFails() {
3356  ASSERT_NO_FATAL_FAILURE(Fails());
3357  ADD_FAILURE() << "shold not reach here.";
3358  }
3359 
3360  void DoExpectNoFatalFailureOnFails() {
3361  EXPECT_NO_FATAL_FAILURE(Fails());
3362  ADD_FAILURE() << "other failure";
3363  }
3364 };
3365 
3366 TEST_F(NoFatalFailureTest, NoFailure) {
3367  EXPECT_NO_FATAL_FAILURE(Succeeds());
3368  ASSERT_NO_FATAL_FAILURE(Succeeds());
3369 }
3370 
3371 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3373  EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3374  "some non-fatal failure");
3376  ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3377  "some non-fatal failure");
3378 }
3379 
3380 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3381  TestPartResultArray gtest_failures;
3382  {
3383  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3384  DoAssertNoFatalFailureOnFails();
3385  }
3386  ASSERT_EQ(2, gtest_failures.size());
3388  gtest_failures.GetTestPartResult(0).type());
3390  gtest_failures.GetTestPartResult(1).type());
3391  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3392  gtest_failures.GetTestPartResult(0).message());
3394  gtest_failures.GetTestPartResult(1).message());
3395 }
3396 
3397 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3398  TestPartResultArray gtest_failures;
3399  {
3400  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3401  DoExpectNoFatalFailureOnFails();
3402  }
3403  ASSERT_EQ(3, gtest_failures.size());
3405  gtest_failures.GetTestPartResult(0).type());
3407  gtest_failures.GetTestPartResult(1).type());
3409  gtest_failures.GetTestPartResult(2).type());
3410  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3411  gtest_failures.GetTestPartResult(0).message());
3413  gtest_failures.GetTestPartResult(1).message());
3414  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3415  gtest_failures.GetTestPartResult(2).message());
3416 }
3417 
3418 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3419  TestPartResultArray gtest_failures;
3420  {
3421  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3422  EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3423  }
3424  ASSERT_EQ(2, gtest_failures.size());
3426  gtest_failures.GetTestPartResult(0).type());
3428  gtest_failures.GetTestPartResult(1).type());
3430  gtest_failures.GetTestPartResult(0).message());
3432  gtest_failures.GetTestPartResult(1).message());
3433 }
3434 
3435 // Tests non-string assertions.
3436 
3437 std::string EditsToString(const std::vector<EditType>& edits) {
3438  std::string out;
3439  for (size_t i = 0; i < edits.size(); ++i) {
3440  static const char kEdits[] = " +-/";
3441  out.append(1, kEdits[edits[i]]);
3442  }
3443  return out;
3444 }
3445 
3446 std::vector<size_t> CharsToIndices(const std::string& str) {
3447  std::vector<size_t> out;
3448  for (size_t i = 0; i < str.size(); ++i) {
3449  out.push_back(str[i]);
3450  }
3451  return out;
3452 }
3453 
3454 std::vector<std::string> CharsToLines(const std::string& str) {
3455  std::vector<std::string> out;
3456  for (size_t i = 0; i < str.size(); ++i) {
3457  out.push_back(str.substr(i, 1));
3458  }
3459  return out;
3460 }
3461 
3462 TEST(EditDistance, TestCases) {
3463  struct Case {
3464  int line;
3465  const char* left;
3466  const char* right;
3467  const char* expected_edits;
3468  const char* expected_diff;
3469  };
3470  static const Case kCases[] = {
3471  // No change.
3472  {__LINE__, "A", "A", " ", ""},
3473  {__LINE__, "ABCDE", "ABCDE", " ", ""},
3474  // Simple adds.
3475  {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3476  {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3477  // Simple removes.
3478  {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3479  {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3480  // Simple replaces.
3481  {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3482  {__LINE__, "ABCD", "abcd", "////",
3483  "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3484  // Path finding.
3485  {__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +",
3486  "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3487  {__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ",
3488  "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3489  {__LINE__, "ABCDE", "BCDCD", "- +/",
3490  "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3491  {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++",
3492  "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3493  "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3494  {}};
3495  for (const Case* c = kCases; c->left; ++c) {
3496  EXPECT_TRUE(c->expected_edits ==
3497  EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3498  CharsToIndices(c->right))))
3499  << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3500  << EditsToString(CalculateOptimalEdits(
3501  CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3502  EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3503  CharsToLines(c->right)))
3504  << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3505  << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3506  << ">";
3507  }
3508 }
3509 
3510 // Tests EqFailure(), used for implementing *EQ* assertions.
3511 TEST(AssertionTest, EqFailure) {
3512  const std::string foo_val("5"), bar_val("6");
3513  const std::string msg1(
3514  EqFailure("foo", "bar", foo_val, bar_val, false)
3515  .failure_message());
3516  EXPECT_STREQ(
3517  "Value of: bar\n"
3518  " Actual: 6\n"
3519  "Expected: foo\n"
3520  "Which is: 5",
3521  msg1.c_str());
3522 
3523  const std::string msg2(
3524  EqFailure("foo", "6", foo_val, bar_val, false)
3525  .failure_message());
3526  EXPECT_STREQ(
3527  "Value of: 6\n"
3528  "Expected: foo\n"
3529  "Which is: 5",
3530  msg2.c_str());
3531 
3532  const std::string msg3(
3533  EqFailure("5", "bar", foo_val, bar_val, false)
3534  .failure_message());
3535  EXPECT_STREQ(
3536  "Value of: bar\n"
3537  " Actual: 6\n"
3538  "Expected: 5",
3539  msg3.c_str());
3540 
3541  const std::string msg4(
3542  EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3543  EXPECT_STREQ(
3544  "Value of: 6\n"
3545  "Expected: 5",
3546  msg4.c_str());
3547 
3548  const std::string msg5(
3549  EqFailure("foo", "bar",
3550  std::string("\"x\""), std::string("\"y\""),
3551  true).failure_message());
3552  EXPECT_STREQ(
3553  "Value of: bar\n"
3554  " Actual: \"y\"\n"
3555  "Expected: foo (ignoring case)\n"
3556  "Which is: \"x\"",
3557  msg5.c_str());
3558 }
3559 
3560 TEST(AssertionTest, EqFailureWithDiff) {
3561  const std::string left(
3562  "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3563  const std::string right(
3564  "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3565  const std::string msg1(
3566  EqFailure("left", "right", left, right, false).failure_message());
3567  EXPECT_STREQ(
3568  "Value of: right\n"
3569  " Actual: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3570  "Expected: left\n"
3571  "Which is: "
3572  "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3573  "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3574  "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3575  msg1.c_str());
3576 }
3577 
3578 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
3579 TEST(AssertionTest, AppendUserMessage) {
3580  const std::string foo("foo");
3581 
3582  Message msg;
3583  EXPECT_STREQ("foo",
3584  AppendUserMessage(foo, msg).c_str());
3585 
3586  msg << "bar";
3587  EXPECT_STREQ("foo\nbar",
3588  AppendUserMessage(foo, msg).c_str());
3589 }
3590 
3591 #ifdef __BORLANDC__
3592 // Silences warnings: "Condition is always true", "Unreachable code"
3593 # pragma option push -w-ccc -w-rch
3594 #endif
3595 
3596 // Tests ASSERT_TRUE.
3597 TEST(AssertionTest, ASSERT_TRUE) {
3598  ASSERT_TRUE(2 > 1); // NOLINT
3600  "2 < 1");
3601 }
3602 
3603 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3604 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3605  ASSERT_TRUE(ResultIsEven(2));
3606 #ifndef __BORLANDC__
3607  // ICE's in C++Builder.
3608  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3609  "Value of: ResultIsEven(3)\n"
3610  " Actual: false (3 is odd)\n"
3611  "Expected: true");
3612 #endif
3613  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3614  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3615  "Value of: ResultIsEvenNoExplanation(3)\n"
3616  " Actual: false (3 is odd)\n"
3617  "Expected: true");
3618 }
3619 
3620 // Tests ASSERT_FALSE.
3621 TEST(AssertionTest, ASSERT_FALSE) {
3622  ASSERT_FALSE(2 < 1); // NOLINT
3624  "Value of: 2 > 1\n"
3625  " Actual: true\n"
3626  "Expected: false");
3627 }
3628 
3629 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3630 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3631  ASSERT_FALSE(ResultIsEven(3));
3632 #ifndef __BORLANDC__
3633  // ICE's in C++Builder.
3634  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3635  "Value of: ResultIsEven(2)\n"
3636  " Actual: true (2 is even)\n"
3637  "Expected: false");
3638 #endif
3639  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3640  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3641  "Value of: ResultIsEvenNoExplanation(2)\n"
3642  " Actual: true\n"
3643  "Expected: false");
3644 }
3645 
3646 #ifdef __BORLANDC__
3647 // Restores warnings after previous "#pragma option push" supressed them
3648 # pragma option pop
3649 #endif
3650 
3651 // Tests using ASSERT_EQ on double values. The purpose is to make
3652 // sure that the specialization we did for integer and anonymous enums
3653 // isn't used for double arguments.
3654 TEST(ExpectTest, ASSERT_EQ_Double) {
3655  // A success.
3656  ASSERT_EQ(5.6, 5.6);
3657 
3658  // A failure.
3659  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3660  "5.1");
3661 }
3662 
3663 // Tests ASSERT_EQ.
3664 TEST(AssertionTest, ASSERT_EQ) {
3665  ASSERT_EQ(5, 2 + 3);
3667  "Value of: 2*3\n"
3668  " Actual: 6\n"
3669  "Expected: 5");
3670 }
3671 
3672 // Tests ASSERT_EQ(NULL, pointer).
3673 #if GTEST_CAN_COMPARE_NULL
3674 TEST(AssertionTest, ASSERT_EQ_NULL) {
3675  // A success.
3676  const char* p = NULL;
3677  // Some older GCC versions may issue a spurious waring in this or the next
3678  // assertion statement. This warning should not be suppressed with
3679  // static_cast since the test verifies the ability to use bare NULL as the
3680  // expected parameter to the macro.
3681  ASSERT_EQ(NULL, p);
3682 
3683  // A failure.
3684  static int n = 0;
3685  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3686  "Value of: &n\n");
3687 }
3688 #endif // GTEST_CAN_COMPARE_NULL
3689 
3690 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3691 // treated as a null pointer by the compiler, we need to make sure
3692 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3693 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3694 TEST(ExpectTest, ASSERT_EQ_0) {
3695  int n = 0;
3696 
3697  // A success.
3698  ASSERT_EQ(0, n);
3699 
3700  // A failure.
3702  "Expected: 0");
3703 }
3704 
3705 // Tests ASSERT_NE.
3706 TEST(AssertionTest, ASSERT_NE) {
3707  ASSERT_NE(6, 7);
3708  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3709  "Expected: ('a') != ('a'), "
3710  "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3711 }
3712 
3713 // Tests ASSERT_LE.
3714 TEST(AssertionTest, ASSERT_LE) {
3715  ASSERT_LE(2, 3);
3716  ASSERT_LE(2, 2);
3718  "Expected: (2) <= (0), actual: 2 vs 0");
3719 }
3720 
3721 // Tests ASSERT_LT.
3722 TEST(AssertionTest, ASSERT_LT) {
3723  ASSERT_LT(2, 3);
3725  "Expected: (2) < (2), actual: 2 vs 2");
3726 }
3727 
3728 // Tests ASSERT_GE.
3729 TEST(AssertionTest, ASSERT_GE) {
3730  ASSERT_GE(2, 1);
3731  ASSERT_GE(2, 2);
3733  "Expected: (2) >= (3), actual: 2 vs 3");
3734 }
3735 
3736 // Tests ASSERT_GT.
3737 TEST(AssertionTest, ASSERT_GT) {
3738  ASSERT_GT(2, 1);
3740  "Expected: (2) > (2), actual: 2 vs 2");
3741 }
3742 
3743 #if GTEST_HAS_EXCEPTIONS
3744 
3745 void ThrowNothing() {}
3746 
3747 // Tests ASSERT_THROW.
3748 TEST(AssertionTest, ASSERT_THROW) {
3749  ASSERT_THROW(ThrowAnInteger(), int);
3750 
3751 # ifndef __BORLANDC__
3752 
3753  // ICE's in C++Builder 2007 and 2009.
3755  ASSERT_THROW(ThrowAnInteger(), bool),
3756  "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3757  " Actual: it throws a different type.");
3758 # endif
3759 
3761  ASSERT_THROW(ThrowNothing(), bool),
3762  "Expected: ThrowNothing() throws an exception of type bool.\n"
3763  " Actual: it throws nothing.");
3764 }
3765 
3766 // Tests ASSERT_NO_THROW.
3767 TEST(AssertionTest, ASSERT_NO_THROW) {
3768  ASSERT_NO_THROW(ThrowNothing());
3769  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3770  "Expected: ThrowAnInteger() doesn't throw an exception."
3771  "\n Actual: it throws.");
3772 }
3773 
3774 // Tests ASSERT_ANY_THROW.
3775 TEST(AssertionTest, ASSERT_ANY_THROW) {
3776  ASSERT_ANY_THROW(ThrowAnInteger());
3778  ASSERT_ANY_THROW(ThrowNothing()),
3779  "Expected: ThrowNothing() throws an exception.\n"
3780  " Actual: it doesn't.");
3781 }
3782 
3783 #endif // GTEST_HAS_EXCEPTIONS
3784 
3785 // Makes sure we deal with the precedence of <<. This test should
3786 // compile.
3787 TEST(AssertionTest, AssertPrecedence) {
3788  ASSERT_EQ(1 < 2, true);
3789  bool false_value = false;
3790  ASSERT_EQ(true && false_value, false);
3791 }
3792 
3793 // A subroutine used by the following test.
3794 void TestEq1(int x) {
3795  ASSERT_EQ(1, x);
3796 }
3797 
3798 // Tests calling a test subroutine that's not part of a fixture.
3799 TEST(AssertionTest, NonFixtureSubroutine) {
3801  "Value of: x");
3802 }
3803 
3804 // An uncopyable class.
3805 class Uncopyable {
3806  public:
3807  explicit Uncopyable(int a_value) : value_(a_value) {}
3808 
3809  int value() const { return value_; }
3810  bool operator==(const Uncopyable& rhs) const {
3811  return value() == rhs.value();
3812  }
3813  private:
3814  // This constructor deliberately has no implementation, as we don't
3815  // want this class to be copyable.
3816  Uncopyable(const Uncopyable&); // NOLINT
3817 
3818  int value_;
3819 };
3820 
3821 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3822  return os << value.value();
3823 }
3824 
3825 
3826 bool IsPositiveUncopyable(const Uncopyable& x) {
3827  return x.value() > 0;
3828 }
3829 
3830 // A subroutine used by the following test.
3831 void TestAssertNonPositive() {
3832  Uncopyable y(-1);
3833  ASSERT_PRED1(IsPositiveUncopyable, y);
3834 }
3835 // A subroutine used by the following test.
3836 void TestAssertEqualsUncopyable() {
3837  Uncopyable x(5);
3838  Uncopyable y(-1);
3839  ASSERT_EQ(x, y);
3840 }
3841 
3842 // Tests that uncopyable objects can be used in assertions.
3843 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3844  Uncopyable x(5);
3845  ASSERT_PRED1(IsPositiveUncopyable, x);
3846  ASSERT_EQ(x, x);
3847  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3848  "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3849  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3850  "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3851 }
3852 
3853 // Tests that uncopyable objects can be used in expects.
3854 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3855  Uncopyable x(5);
3856  EXPECT_PRED1(IsPositiveUncopyable, x);
3857  Uncopyable y(-1);
3858  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3859  "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3860  EXPECT_EQ(x, x);
3862  "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3863 }
3864 
3866  kE1 = 0,
3867  kE2 = 1
3868 };
3869 
3870 TEST(AssertionTest, NamedEnum) {
3871  EXPECT_EQ(kE1, kE1);
3872  EXPECT_LT(kE1, kE2);
3873  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3874  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3875 }
3876 
3877 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3878 // anonymous enums in assertions. Therefore the following test is not
3879 // done on Mac.
3880 // Sun Studio and HP aCC also reject this code.
3881 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3882 
3883 // Tests using assertions with anonymous enums.
3884 enum {
3885  kCaseA = -1,
3886 
3887 # if GTEST_OS_LINUX
3888 
3889  // We want to test the case where the size of the anonymous enum is
3890  // larger than sizeof(int), to make sure our implementation of the
3891  // assertions doesn't truncate the enums. However, MSVC
3892  // (incorrectly) doesn't allow an enum value to exceed the range of
3893  // an int, so this has to be conditionally compiled.
3894  //
3895  // On Linux, kCaseB and kCaseA have the same value when truncated to
3896  // int size. We want to test whether this will confuse the
3897  // assertions.
3899 
3900 # else
3901 
3902  kCaseB = INT_MAX,
3903 
3904 # endif // GTEST_OS_LINUX
3905 
3906  kCaseC = 42
3907 };
3908 
3909 TEST(AssertionTest, AnonymousEnum) {
3910 # if GTEST_OS_LINUX
3911 
3912  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3913 
3914 # endif // GTEST_OS_LINUX
3915 
3916  EXPECT_EQ(kCaseA, kCaseA);
3917  EXPECT_NE(kCaseA, kCaseB);
3918  EXPECT_LT(kCaseA, kCaseB);
3919  EXPECT_LE(kCaseA, kCaseB);
3920  EXPECT_GT(kCaseB, kCaseA);
3921  EXPECT_GE(kCaseA, kCaseA);
3922  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3923  "(kCaseA) >= (kCaseB)");
3924  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3925  "-1 vs 42");
3926 
3927  ASSERT_EQ(kCaseA, kCaseA);
3928  ASSERT_NE(kCaseA, kCaseB);
3929  ASSERT_LT(kCaseA, kCaseB);
3930  ASSERT_LE(kCaseA, kCaseB);
3931  ASSERT_GT(kCaseB, kCaseA);
3932  ASSERT_GE(kCaseA, kCaseA);
3933 
3934 # ifndef __BORLANDC__
3935 
3936  // ICE's in C++Builder.
3937  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3938  "Value of: kCaseB");
3939  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3940  "Actual: 42");
3941 # endif
3942 
3943  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3944  "Which is: -1");
3945 }
3946 
3947 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3948 
3949 #if GTEST_OS_WINDOWS
3950 
3951 static HRESULT UnexpectedHRESULTFailure() {
3952  return E_UNEXPECTED;
3953 }
3954 
3955 static HRESULT OkHRESULTSuccess() {
3956  return S_OK;
3957 }
3958 
3959 static HRESULT FalseHRESULTSuccess() {
3960  return S_FALSE;
3961 }
3962 
3963 // HRESULT assertion tests test both zero and non-zero
3964 // success codes as well as failure message for each.
3965 //
3966 // Windows CE doesn't support message texts.
3967 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3968  EXPECT_HRESULT_SUCCEEDED(S_OK);
3969  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3970 
3971  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3972  "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3973  " Actual: 0x8000FFFF");
3974 }
3975 
3976 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3977  ASSERT_HRESULT_SUCCEEDED(S_OK);
3978  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3979 
3980  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3981  "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3982  " Actual: 0x8000FFFF");
3983 }
3984 
3985 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3986  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3987 
3988  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3989  "Expected: (OkHRESULTSuccess()) fails.\n"
3990  " Actual: 0x0");
3991  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3992  "Expected: (FalseHRESULTSuccess()) fails.\n"
3993  " Actual: 0x1");
3994 }
3995 
3996 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3997  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3998 
3999 # ifndef __BORLANDC__
4000 
4001  // ICE's in C++Builder 2007 and 2009.
4002  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4003  "Expected: (OkHRESULTSuccess()) fails.\n"
4004  " Actual: 0x0");
4005 # endif
4006 
4007  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4008  "Expected: (FalseHRESULTSuccess()) fails.\n"
4009  " Actual: 0x1");
4010 }
4011 
4012 // Tests that streaming to the HRESULT macros works.
4013 TEST(HRESULTAssertionTest, Streaming) {
4014  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4015  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4016  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4017  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4018 
4020  EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4021  "expected failure");
4022 
4023 # ifndef __BORLANDC__
4024 
4025  // ICE's in C++Builder 2007 and 2009.
4027  ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4028  "expected failure");
4029 # endif
4030 
4032  EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4033  "expected failure");
4034 
4036  ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4037  "expected failure");
4038 }
4039 
4040 #endif // GTEST_OS_WINDOWS
4041 
4042 #ifdef __BORLANDC__
4043 // Silences warnings: "Condition is always true", "Unreachable code"
4044 # pragma option push -w-ccc -w-rch
4045 #endif
4046 
4047 // Tests that the assertion macros behave like single statements.
4048 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4049  if (AlwaysFalse())
4050  ASSERT_TRUE(false) << "This should never be executed; "
4051  "It's a compilation test only.";
4052 
4053  if (AlwaysTrue())
4054  EXPECT_FALSE(false);
4055  else
4056  ; // NOLINT
4057 
4058  if (AlwaysFalse())
4059  ASSERT_LT(1, 3);
4060 
4061  if (AlwaysFalse())
4062  ; // NOLINT
4063  else
4064  EXPECT_GT(3, 2) << "";
4065 }
4066 
4067 #if GTEST_HAS_EXCEPTIONS
4068 // Tests that the compiler will not complain about unreachable code in the
4069 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
4070 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4071  int n = 0;
4072 
4073  EXPECT_THROW(throw 1, int);
4074  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4075  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4076  EXPECT_NO_THROW(n++);
4078  EXPECT_ANY_THROW(throw 1);
4080 }
4081 
4082 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4083  if (AlwaysFalse())
4084  EXPECT_THROW(ThrowNothing(), bool);
4085 
4086  if (AlwaysTrue())
4087  EXPECT_THROW(ThrowAnInteger(), int);
4088  else
4089  ; // NOLINT
4090 
4091  if (AlwaysFalse())
4092  EXPECT_NO_THROW(ThrowAnInteger());
4093 
4094  if (AlwaysTrue())
4095  EXPECT_NO_THROW(ThrowNothing());
4096  else
4097  ; // NOLINT
4098 
4099  if (AlwaysFalse())
4100  EXPECT_ANY_THROW(ThrowNothing());
4101 
4102  if (AlwaysTrue())
4103  EXPECT_ANY_THROW(ThrowAnInteger());
4104  else
4105  ; // NOLINT
4106 }
4107 #endif // GTEST_HAS_EXCEPTIONS
4108 
4109 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4110  if (AlwaysFalse())
4111  EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4112  << "It's a compilation test only.";
4113  else
4114  ; // NOLINT
4115 
4116  if (AlwaysFalse())
4117  ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4118  else
4119  ; // NOLINT
4120 
4121  if (AlwaysTrue())
4123  else
4124  ; // NOLINT
4125 
4126  if (AlwaysFalse())
4127  ; // NOLINT
4128  else
4130 }
4131 
4132 // Tests that the assertion macros work well with switch statements.
4133 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4134  switch (0) {
4135  case 1:
4136  break;
4137  default:
4138  ASSERT_TRUE(true);
4139  }
4140 
4141  switch (0)
4142  case 0:
4143  EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4144 
4145  // Binary assertions are implemented using a different code path
4146  // than the Boolean assertions. Hence we test them separately.
4147  switch (0) {
4148  case 1:
4149  default:
4150  ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4151  }
4152 
4153  switch (0)
4154  case 0:
4155  EXPECT_NE(1, 2);
4156 }
4157 
4158 #if GTEST_HAS_EXCEPTIONS
4159 
4160 void ThrowAString() {
4161  throw "std::string";
4162 }
4163 
4164 // Test that the exception assertion macros compile and work with const
4165 // type qualifier.
4166 TEST(AssertionSyntaxTest, WorksWithConst) {
4167  ASSERT_THROW(ThrowAString(), const char*);
4168 
4169  EXPECT_THROW(ThrowAString(), const char*);
4170 }
4171 
4172 #endif // GTEST_HAS_EXCEPTIONS
4173 
4174 } // namespace
4175 
4176 namespace testing {
4177 
4178 // Tests that Google Test tracks SUCCEED*.
4179 TEST(SuccessfulAssertionTest, SUCCEED) {
4180  SUCCEED();
4181  SUCCEED() << "OK";
4182  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4183 }
4184 
4185 // Tests that Google Test doesn't track successful EXPECT_*.
4186 TEST(SuccessfulAssertionTest, EXPECT) {
4187  EXPECT_TRUE(true);
4188  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4189 }
4190 
4191 // Tests that Google Test doesn't track successful EXPECT_STR*.
4192 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4193  EXPECT_STREQ("", "");
4194  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4195 }
4196 
4197 // Tests that Google Test doesn't track successful ASSERT_*.
4198 TEST(SuccessfulAssertionTest, ASSERT) {
4199  ASSERT_TRUE(true);
4200  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4201 }
4202 
4203 // Tests that Google Test doesn't track successful ASSERT_STR*.
4204 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4205  ASSERT_STREQ("", "");
4206  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4207 }
4208 
4209 } // namespace testing
4210 
4211 namespace {
4212 
4213 // Tests the message streaming variation of assertions.
4214 
4215 TEST(AssertionWithMessageTest, EXPECT) {
4216  EXPECT_EQ(1, 1) << "This should succeed.";
4217  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4218  "Expected failure #1");
4219  EXPECT_LE(1, 2) << "This should succeed.";
4220  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4221  "Expected failure #2.");
4222  EXPECT_GE(1, 0) << "This should succeed.";
4223  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4224  "Expected failure #3.");
4225 
4226  EXPECT_STREQ("1", "1") << "This should succeed.";
4227  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4228  "Expected failure #4.");
4229  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4230  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4231  "Expected failure #5.");
4232 
4233  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4234  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4235  "Expected failure #6.");
4236  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4237 }
4238 
4239 TEST(AssertionWithMessageTest, ASSERT) {
4240  ASSERT_EQ(1, 1) << "This should succeed.";
4241  ASSERT_NE(1, 2) << "This should succeed.";
4242  ASSERT_LE(1, 2) << "This should succeed.";
4243  ASSERT_LT(1, 2) << "This should succeed.";
4244  ASSERT_GE(1, 0) << "This should succeed.";
4245  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4246  "Expected failure.");
4247 }
4248 
4249 TEST(AssertionWithMessageTest, ASSERT_STR) {
4250  ASSERT_STREQ("1", "1") << "This should succeed.";
4251  ASSERT_STRNE("1", "2") << "This should succeed.";
4252  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4253  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4254  "Expected failure.");
4255 }
4256 
4257 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4258  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4259  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4260  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.", // NOLINT
4261  "Expect failure.");
4262  // To work around a bug in gcc 2.95.0, there is intentionally no
4263  // space after the first comma in the previous statement.
4264 }
4265 
4266 // Tests using ASSERT_FALSE with a streamed message.
4267 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4268  ASSERT_FALSE(false) << "This shouldn't fail.";
4269  EXPECT_FATAL_FAILURE({ // NOLINT
4270  ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4271  << " evaluates to " << true;
4272  }, "Expected failure");
4273 }
4274 
4275 // Tests using FAIL with a streamed message.
4276 TEST(AssertionWithMessageTest, FAIL) {
4277  EXPECT_FATAL_FAILURE(FAIL() << 0,
4278  "0");
4279 }
4280 
4281 // Tests using SUCCEED with a streamed message.
4282 TEST(AssertionWithMessageTest, SUCCEED) {
4283  SUCCEED() << "Success == " << 1;
4284 }
4285 
4286 // Tests using ASSERT_TRUE with a streamed message.
4287 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4288  ASSERT_TRUE(true) << "This should succeed.";
4289  ASSERT_TRUE(true) << true;
4290  EXPECT_FATAL_FAILURE({ // NOLINT
4291  ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4292  << static_cast<char *>(NULL);
4293  }, "(null)(null)");
4294 }
4295 
4296 #if GTEST_OS_WINDOWS
4297 // Tests using wide strings in assertion messages.
4298 TEST(AssertionWithMessageTest, WideStringMessage) {
4299  EXPECT_NONFATAL_FAILURE({ // NOLINT
4300  EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4301  }, "This failure is expected.");
4302  EXPECT_FATAL_FAILURE({ // NOLINT
4303  ASSERT_EQ(1, 2) << "This failure is "
4304  << L"expected too.\x8120";
4305  }, "This failure is expected too.");
4306 }
4307 #endif // GTEST_OS_WINDOWS
4308 
4309 // Tests EXPECT_TRUE.
4310 TEST(ExpectTest, EXPECT_TRUE) {
4311  EXPECT_TRUE(true) << "Intentional success";
4312  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4313  "Intentional failure #1.");
4314  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4315  "Intentional failure #2.");
4316  EXPECT_TRUE(2 > 1); // NOLINT
4318  "Value of: 2 < 1\n"
4319  " Actual: false\n"
4320  "Expected: true");
4322  "2 > 3");
4323 }
4324 
4325 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4326 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4327  EXPECT_TRUE(ResultIsEven(2));
4328  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4329  "Value of: ResultIsEven(3)\n"
4330  " Actual: false (3 is odd)\n"
4331  "Expected: true");
4332  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4333  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4334  "Value of: ResultIsEvenNoExplanation(3)\n"
4335  " Actual: false (3 is odd)\n"
4336  "Expected: true");
4337 }
4338 
4339 // Tests EXPECT_FALSE with a streamed message.
4340 TEST(ExpectTest, EXPECT_FALSE) {
4341  EXPECT_FALSE(2 < 1); // NOLINT
4342  EXPECT_FALSE(false) << "Intentional success";
4343  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4344  "Intentional failure #1.");
4345  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4346  "Intentional failure #2.");
4348  "Value of: 2 > 1\n"
4349  " Actual: true\n"
4350  "Expected: false");
4352  "2 < 3");
4353 }
4354 
4355 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4356 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4357  EXPECT_FALSE(ResultIsEven(3));
4358  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4359  "Value of: ResultIsEven(2)\n"
4360  " Actual: true (2 is even)\n"
4361  "Expected: false");
4362  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4363  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4364  "Value of: ResultIsEvenNoExplanation(2)\n"
4365  " Actual: true\n"
4366  "Expected: false");
4367 }
4368 
4369 #ifdef __BORLANDC__
4370 // Restores warnings after previous "#pragma option push" supressed them
4371 # pragma option pop
4372 #endif
4373 
4374 // Tests EXPECT_EQ.
4375 TEST(ExpectTest, EXPECT_EQ) {
4376  EXPECT_EQ(5, 2 + 3);
4378  "Value of: 2*3\n"
4379  " Actual: 6\n"
4380  "Expected: 5");
4382  "2 - 3");
4383 }
4384 
4385 // Tests using EXPECT_EQ on double values. The purpose is to make
4386 // sure that the specialization we did for integer and anonymous enums
4387 // isn't used for double arguments.
4388 TEST(ExpectTest, EXPECT_EQ_Double) {
4389  // A success.
4390  EXPECT_EQ(5.6, 5.6);
4391 
4392  // A failure.
4394  "5.1");
4395 }
4396 
4397 #if GTEST_CAN_COMPARE_NULL
4398 // Tests EXPECT_EQ(NULL, pointer).
4399 TEST(ExpectTest, EXPECT_EQ_NULL) {
4400  // A success.
4401  const char* p = NULL;
4402  // Some older GCC versions may issue a spurious warning in this or the next
4403  // assertion statement. This warning should not be suppressed with
4404  // static_cast since the test verifies the ability to use bare NULL as the
4405  // expected parameter to the macro.
4406  EXPECT_EQ(NULL, p);
4407 
4408  // A failure.
4409  int n = 0;
4411  "Value of: &n\n");
4412 }
4413 #endif // GTEST_CAN_COMPARE_NULL
4414 
4415 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4416 // treated as a null pointer by the compiler, we need to make sure
4417 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4418 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4419 TEST(ExpectTest, EXPECT_EQ_0) {
4420  int n = 0;
4421 
4422  // A success.
4423  EXPECT_EQ(0, n);
4424 
4425  // A failure.
4427  "Expected: 0");
4428 }
4429 
4430 // Tests EXPECT_NE.
4431 TEST(ExpectTest, EXPECT_NE) {
4432  EXPECT_NE(6, 7);
4433 
4435  "Expected: ('a') != ('a'), "
4436  "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4438  "2");
4439  char* const p0 = NULL;
4441  "p0");
4442  // Only way to get the Nokia compiler to compile the cast
4443  // is to have a separate void* variable first. Putting
4444  // the two casts on the same line doesn't work, neither does
4445  // a direct C-style to char*.
4446  void* pv1 = (void*)0x1234; // NOLINT
4447  char* const p1 = reinterpret_cast<char*>(pv1);
4449  "p1");
4450 }
4451 
4452 // Tests EXPECT_LE.
4453 TEST(ExpectTest, EXPECT_LE) {
4454  EXPECT_LE(2, 3);
4455  EXPECT_LE(2, 2);
4457  "Expected: (2) <= (0), actual: 2 vs 0");
4459  "(1.1) <= (0.9)");
4460 }
4461 
4462 // Tests EXPECT_LT.
4463 TEST(ExpectTest, EXPECT_LT) {
4464  EXPECT_LT(2, 3);
4466  "Expected: (2) < (2), actual: 2 vs 2");
4468  "(2) < (1)");
4469 }
4470 
4471 // Tests EXPECT_GE.
4472 TEST(ExpectTest, EXPECT_GE) {
4473  EXPECT_GE(2, 1);
4474  EXPECT_GE(2, 2);
4476  "Expected: (2) >= (3), actual: 2 vs 3");
4478  "(0.9) >= (1.1)");
4479 }
4480 
4481 // Tests EXPECT_GT.
4482 TEST(ExpectTest, EXPECT_GT) {
4483  EXPECT_GT(2, 1);
4485  "Expected: (2) > (2), actual: 2 vs 2");
4487  "(2) > (3)");
4488 }
4489 
4490 #if GTEST_HAS_EXCEPTIONS
4491 
4492 // Tests EXPECT_THROW.
4493 TEST(ExpectTest, EXPECT_THROW) {
4494  EXPECT_THROW(ThrowAnInteger(), int);
4495  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4496  "Expected: ThrowAnInteger() throws an exception of "
4497  "type bool.\n Actual: it throws a different type.");
4499  EXPECT_THROW(ThrowNothing(), bool),
4500  "Expected: ThrowNothing() throws an exception of type bool.\n"
4501  " Actual: it throws nothing.");
4502 }
4503 
4504 // Tests EXPECT_NO_THROW.
4505 TEST(ExpectTest, EXPECT_NO_THROW) {
4506  EXPECT_NO_THROW(ThrowNothing());
4507  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4508  "Expected: ThrowAnInteger() doesn't throw an "
4509  "exception.\n Actual: it throws.");
4510 }
4511 
4512 // Tests EXPECT_ANY_THROW.
4513 TEST(ExpectTest, EXPECT_ANY_THROW) {
4514  EXPECT_ANY_THROW(ThrowAnInteger());
4516  EXPECT_ANY_THROW(ThrowNothing()),
4517  "Expected: ThrowNothing() throws an exception.\n"
4518  " Actual: it doesn't.");
4519 }
4520 
4521 #endif // GTEST_HAS_EXCEPTIONS
4522 
4523 // Make sure we deal with the precedence of <<.
4524 TEST(ExpectTest, ExpectPrecedence) {
4525  EXPECT_EQ(1 < 2, true);
4526  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4527  "Value of: true && false");
4528 }
4529 
4530 
4531 // Tests the StreamableToString() function.
4532 
4533 // Tests using StreamableToString() on a scalar.
4534 TEST(StreamableToStringTest, Scalar) {
4535  EXPECT_STREQ("5", StreamableToString(5).c_str());
4536 }
4537 
4538 // Tests using StreamableToString() on a non-char pointer.
4539 TEST(StreamableToStringTest, Pointer) {
4540  int n = 0;
4541  int* p = &n;
4542  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4543 }
4544 
4545 // Tests using StreamableToString() on a NULL non-char pointer.
4546 TEST(StreamableToStringTest, NullPointer) {
4547  int* p = NULL;
4548  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4549 }
4550 
4551 // Tests using StreamableToString() on a C string.
4552 TEST(StreamableToStringTest, CString) {
4553  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4554 }
4555 
4556 // Tests using StreamableToString() on a NULL C string.
4557 TEST(StreamableToStringTest, NullCString) {
4558  char* p = NULL;
4559  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4560 }
4561 
4562 // Tests using streamable values as assertion messages.
4563 
4564 // Tests using std::string as an assertion message.
4565 TEST(StreamableTest, string) {
4566  static const std::string str(
4567  "This failure message is a std::string, and is expected.");
4568  EXPECT_FATAL_FAILURE(FAIL() << str,
4569  str.c_str());
4570 }
4571 
4572 // Tests that we can output strings containing embedded NULs.
4573 // Limited to Linux because we can only do this with std::string's.
4574 TEST(StreamableTest, stringWithEmbeddedNUL) {
4575  static const char char_array_with_nul[] =
4576  "Here's a NUL\0 and some more string";
4577  static const std::string string_with_nul(char_array_with_nul,
4578  sizeof(char_array_with_nul)
4579  - 1); // drops the trailing NUL
4580  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4581  "Here's a NUL\\0 and some more string");
4582 }
4583 
4584 // Tests that we can output a NUL char.
4585 TEST(StreamableTest, NULChar) {
4586  EXPECT_FATAL_FAILURE({ // NOLINT
4587  FAIL() << "A NUL" << '\0' << " and some more string";
4588  }, "A NUL\\0 and some more string");
4589 }
4590 
4591 // Tests using int as an assertion message.
4592 TEST(StreamableTest, int) {
4593  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4594  "900913");
4595 }
4596 
4597 // Tests using NULL char pointer as an assertion message.
4598 //
4599 // In MSVC, streaming a NULL char * causes access violation. Google Test
4600 // implemented a workaround (substituting "(null)" for NULL). This
4601 // tests whether the workaround works.
4602 TEST(StreamableTest, NullCharPtr) {
4603  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4604  "(null)");
4605 }
4606 
4607 // Tests that basic IO manipulators (endl, ends, and flush) can be
4608 // streamed to testing::Message.
4609 TEST(StreamableTest, BasicIoManip) {
4610  EXPECT_FATAL_FAILURE({ // NOLINT
4611  FAIL() << "Line 1." << std::endl
4612  << "A NUL char " << std::ends << std::flush << " in line 2.";
4613  }, "Line 1.\nA NUL char \\0 in line 2.");
4614 }
4615 
4616 // Tests the macros that haven't been covered so far.
4617 
4618 void AddFailureHelper(bool* aborted) {
4619  *aborted = true;
4620  ADD_FAILURE() << "Intentional failure.";
4621  *aborted = false;
4622 }
4623 
4624 // Tests ADD_FAILURE.
4625 TEST(MacroTest, ADD_FAILURE) {
4626  bool aborted = true;
4627  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4628  "Intentional failure.");
4629  EXPECT_FALSE(aborted);
4630 }
4631 
4632 // Tests ADD_FAILURE_AT.
4633 TEST(MacroTest, ADD_FAILURE_AT) {
4634  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4635  // the failure message contains the user-streamed part.
4636  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4637 
4638  // Verifies that the user-streamed part is optional.
4639  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4640 
4641  // Unfortunately, we cannot verify that the failure message contains
4642  // the right file path and line number the same way, as
4643  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4644  // line number. Instead, we do that in gtest_output_test_.cc.
4645 }
4646 
4647 // Tests FAIL.
4648 TEST(MacroTest, FAIL) {
4650  "Failed");
4651  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4652  "Intentional failure.");
4653 }
4654 
4655 // Tests SUCCEED
4656 TEST(MacroTest, SUCCEED) {
4657  SUCCEED();
4658  SUCCEED() << "Explicit success.";
4659 }
4660 
4661 // Tests for EXPECT_EQ() and ASSERT_EQ().
4662 //
4663 // These tests fail *intentionally*, s.t. the failure messages can be
4664 // generated and tested.
4665 //
4666 // We have different tests for different argument types.
4667 
4668 // Tests using bool values in {EXPECT|ASSERT}_EQ.
4669 TEST(EqAssertionTest, Bool) {
4670  EXPECT_EQ(true, true);
4672  bool false_value = false;
4673  ASSERT_EQ(false_value, true);
4674  }, "Value of: true");
4675 }
4676 
4677 // Tests using int values in {EXPECT|ASSERT}_EQ.
4678 TEST(EqAssertionTest, Int) {
4679  ASSERT_EQ(32, 32);
4681  "33");
4682 }
4683 
4684 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
4685 TEST(EqAssertionTest, Time_T) {
4686  EXPECT_EQ(static_cast<time_t>(0),
4687  static_cast<time_t>(0));
4688  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4689  static_cast<time_t>(1234)),
4690  "1234");
4691 }
4692 
4693 // Tests using char values in {EXPECT|ASSERT}_EQ.
4694 TEST(EqAssertionTest, Char) {
4695  ASSERT_EQ('z', 'z');
4696  const char ch = 'b';
4698  "ch");
4700  "ch");
4701 }
4702 
4703 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4704 TEST(EqAssertionTest, WideChar) {
4705  EXPECT_EQ(L'b', L'b');
4706 
4707  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4708  "Value of: L'x'\n"
4709  " Actual: L'x' (120, 0x78)\n"
4710  "Expected: L'\0'\n"
4711  "Which is: L'\0' (0, 0x0)");
4712 
4713  static wchar_t wchar;
4714  wchar = L'b';
4715  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4716  "wchar");
4717  wchar = 0x8119;
4718  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4719  "Value of: wchar");
4720 }
4721 
4722 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4723 TEST(EqAssertionTest, StdString) {
4724  // Compares a const char* to an std::string that has identical
4725  // content.
4726  ASSERT_EQ("Test", ::std::string("Test"));
4727 
4728  // Compares two identical std::strings.
4729  static const ::std::string str1("A * in the middle");
4730  static const ::std::string str2(str1);
4731  EXPECT_EQ(str1, str2);
4732 
4733  // Compares a const char* to an std::string that has different
4734  // content
4735  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4736  "\"test\"");
4737 
4738  // Compares an std::string to a char* that has different content.
4739  char* const p1 = const_cast<char*>("foo");
4741  "p1");
4742 
4743  // Compares two std::strings that have different contents, one of
4744  // which having a NUL character in the middle. This should fail.
4745  static ::std::string str3(str1);
4746  str3.at(2) = '\0';
4747  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4748  "Value of: str3\n"
4749  " Actual: \"A \\0 in the middle\"");
4750 }
4751 
4752 #if GTEST_HAS_STD_WSTRING
4753 
4754 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4755 TEST(EqAssertionTest, StdWideString) {
4756  // Compares two identical std::wstrings.
4757  const ::std::wstring wstr1(L"A * in the middle");
4758  const ::std::wstring wstr2(wstr1);
4759  ASSERT_EQ(wstr1, wstr2);
4760 
4761  // Compares an std::wstring to a const wchar_t* that has identical
4762  // content.
4763  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4764  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4765 
4766  // Compares an std::wstring to a const wchar_t* that has different
4767  // content.
4768  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4769  EXPECT_NONFATAL_FAILURE({ // NOLINT
4770  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4771  }, "kTestX8120");
4772 
4773  // Compares two std::wstrings that have different contents, one of
4774  // which having a NUL character in the middle.
4775  ::std::wstring wstr3(wstr1);
4776  wstr3.at(2) = L'\0';
4777  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4778  "wstr3");
4779 
4780  // Compares a wchar_t* to an std::wstring that has different
4781  // content.
4782  EXPECT_FATAL_FAILURE({ // NOLINT
4783  ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4784  }, "");
4785 }
4786 
4787 #endif // GTEST_HAS_STD_WSTRING
4788 
4789 #if GTEST_HAS_GLOBAL_STRING
4790 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
4791 TEST(EqAssertionTest, GlobalString) {
4792  // Compares a const char* to a ::string that has identical content.
4793  EXPECT_EQ("Test", ::string("Test"));
4794 
4795  // Compares two identical ::strings.
4796  const ::string str1("A * in the middle");
4797  const ::string str2(str1);
4798  ASSERT_EQ(str1, str2);
4799 
4800  // Compares a ::string to a const char* that has different content.
4801  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4802  "test");
4803 
4804  // Compares two ::strings that have different contents, one of which
4805  // having a NUL character in the middle.
4806  ::string str3(str1);
4807  str3.at(2) = '\0';
4808  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4809  "str3");
4810 
4811  // Compares a ::string to a char* that has different content.
4812  EXPECT_FATAL_FAILURE({ // NOLINT
4813  ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4814  }, "");
4815 }
4816 
4817 #endif // GTEST_HAS_GLOBAL_STRING
4818 
4819 #if GTEST_HAS_GLOBAL_WSTRING
4820 
4821 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4822 TEST(EqAssertionTest, GlobalWideString) {
4823  // Compares two identical ::wstrings.
4824  static const ::wstring wstr1(L"A * in the middle");
4825  static const ::wstring wstr2(wstr1);
4826  EXPECT_EQ(wstr1, wstr2);
4827 
4828  // Compares a const wchar_t* to a ::wstring that has identical content.
4829  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4830  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4831 
4832  // Compares a const wchar_t* to a ::wstring that has different
4833  // content.
4834  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4835  EXPECT_NONFATAL_FAILURE({ // NOLINT
4836  EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4837  }, "Test\\x8119");
4838 
4839  // Compares a wchar_t* to a ::wstring that has different content.
4840  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4841  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4842  "bar");
4843 
4844  // Compares two ::wstrings that have different contents, one of which
4845  // having a NUL character in the middle.
4846  static ::wstring wstr3;
4847  wstr3 = wstr1;
4848  wstr3.at(2) = L'\0';
4849  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4850  "wstr3");
4851 }
4852 
4853 #endif // GTEST_HAS_GLOBAL_WSTRING
4854 
4855 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
4856 TEST(EqAssertionTest, CharPointer) {
4857  char* const p0 = NULL;
4858  // Only way to get the Nokia compiler to compile the cast
4859  // is to have a separate void* variable first. Putting
4860  // the two casts on the same line doesn't work, neither does
4861  // a direct C-style to char*.
4862  void* pv1 = (void*)0x1234; // NOLINT
4863  void* pv2 = (void*)0xABC0; // NOLINT
4864  char* const p1 = reinterpret_cast<char*>(pv1);
4865  char* const p2 = reinterpret_cast<char*>(pv2);
4866  ASSERT_EQ(p1, p1);
4867 
4869  "Value of: p2");
4871  "p2");
4872  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4873  reinterpret_cast<char*>(0xABC0)),
4874  "ABC0");
4875 }
4876 
4877 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4878 TEST(EqAssertionTest, WideCharPointer) {
4879  wchar_t* const p0 = NULL;
4880  // Only way to get the Nokia compiler to compile the cast
4881  // is to have a separate void* variable first. Putting
4882  // the two casts on the same line doesn't work, neither does
4883  // a direct C-style to char*.
4884  void* pv1 = (void*)0x1234; // NOLINT
4885  void* pv2 = (void*)0xABC0; // NOLINT
4886  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4887  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4888  EXPECT_EQ(p0, p0);
4889 
4891  "Value of: p2");
4893  "p2");
4894  void* pv3 = (void*)0x1234; // NOLINT
4895  void* pv4 = (void*)0xABC0; // NOLINT
4896  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4897  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4899  "p4");
4900 }
4901 
4902 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4903 TEST(EqAssertionTest, OtherPointer) {
4904  ASSERT_EQ(static_cast<const int*>(NULL),
4905  static_cast<const int*>(NULL));
4906  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4907  reinterpret_cast<const int*>(0x1234)),
4908  "0x1234");
4909 }
4910 
4911 // A class that supports binary comparison operators but not streaming.
4912 class UnprintableChar {
4913  public:
4914  explicit UnprintableChar(char ch) : char_(ch) {}
4915 
4916  bool operator==(const UnprintableChar& rhs) const {
4917  return char_ == rhs.char_;
4918  }
4919  bool operator!=(const UnprintableChar& rhs) const {
4920  return char_ != rhs.char_;
4921  }
4922  bool operator<(const UnprintableChar& rhs) const {
4923  return char_ < rhs.char_;
4924  }
4925  bool operator<=(const UnprintableChar& rhs) const {
4926  return char_ <= rhs.char_;
4927  }
4928  bool operator>(const UnprintableChar& rhs) const {
4929  return char_ > rhs.char_;
4930  }
4931  bool operator>=(const UnprintableChar& rhs) const {
4932  return char_ >= rhs.char_;
4933  }
4934 
4935  private:
4936  char char_;
4937 };
4938 
4939 // Tests that ASSERT_EQ() and friends don't require the arguments to
4940 // be printable.
4941 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4942  const UnprintableChar x('x'), y('y');
4943  ASSERT_EQ(x, x);
4944  EXPECT_NE(x, y);
4945  ASSERT_LT(x, y);
4946  EXPECT_LE(x, y);
4947  ASSERT_GT(y, x);
4948  EXPECT_GE(x, x);
4949 
4950  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4951  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4952  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4953  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4954  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4955 
4956  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4957  // variables, so we have to write UnprintableChar('x') instead of x.
4958 #ifndef __BORLANDC__
4959  // ICE's in C++Builder.
4960  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4961  "1-byte object <78>");
4962  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4963  "1-byte object <78>");
4964 #endif
4965  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4966  "1-byte object <79>");
4967  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4968  "1-byte object <78>");
4969  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4970  "1-byte object <79>");
4971 }
4972 
4973 // Tests the FRIEND_TEST macro.
4974 
4975 // This class has a private member we want to test. We will test it
4976 // both in a TEST and in a TEST_F.
4977 class Foo {
4978  public:
4979  Foo() {}
4980 
4981  private:
4982  int Bar() const { return 1; }
4983 
4984  // Declares the friend tests that can access the private member
4985  // Bar().
4986  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4987  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4988 };
4989 
4990 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4991 // class's private members. This should compile.
4992 TEST(FRIEND_TEST_Test, TEST) {
4993  ASSERT_EQ(1, Foo().Bar());
4994 }
4995 
4996 // The fixture needed to test using FRIEND_TEST with TEST_F.
4997 class FRIEND_TEST_Test2 : public Test {
4998  protected:
4999  Foo foo;
5000 };
5001 
5002 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5003 // class's private members. This should compile.
5004 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5005  ASSERT_EQ(1, foo.Bar());
5006 }
5007 
5008 // Tests the life cycle of Test objects.
5009 
5010 // The test fixture for testing the life cycle of Test objects.
5011 //
5012 // This class counts the number of live test objects that uses this
5013 // fixture.
5014 class TestLifeCycleTest : public Test {
5015  protected:
5016  // Constructor. Increments the number of test objects that uses
5017  // this fixture.
5018  TestLifeCycleTest() { count_++; }
5019 
5020  // Destructor. Decrements the number of test objects that uses this
5021  // fixture.
5022  ~TestLifeCycleTest() { count_--; }
5023 
5024  // Returns the number of live test objects that uses this fixture.
5025  int count() const { return count_; }
5026 
5027  private:
5028  static int count_;
5029 };
5030 
5031 int TestLifeCycleTest::count_ = 0;
5032 
5033 // Tests the life cycle of test objects.
5034 TEST_F(TestLifeCycleTest, Test1) {
5035  // There should be only one test object in this test case that's
5036  // currently alive.
5037  ASSERT_EQ(1, count());
5038 }
5039 
5040 // Tests the life cycle of test objects.
5041 TEST_F(TestLifeCycleTest, Test2) {
5042  // After Test1 is done and Test2 is started, there should still be
5043  // only one live test object, as the object for Test1 should've been
5044  // deleted.
5045  ASSERT_EQ(1, count());
5046 }
5047 
5048 } // namespace
5049 
5050 // Tests that the copy constructor works when it is NOT optimized away by
5051 // the compiler.
5052 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5053  // Checks that the copy constructor doesn't try to dereference NULL pointers
5054  // in the source object.
5056  AssertionResult r2 = r1;
5057  // The following line is added to prevent the compiler from optimizing
5058  // away the constructor call.
5059  r1 << "abc";
5060 
5061  AssertionResult r3 = r1;
5062  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5063  EXPECT_STREQ("abc", r1.message());
5064 }
5065 
5066 // Tests that AssertionSuccess and AssertionFailure construct
5067 // AssertionResult objects as expected.
5068 TEST(AssertionResultTest, ConstructionWorks) {
5070  EXPECT_TRUE(r1);
5071  EXPECT_STREQ("", r1.message());
5072 
5073  AssertionResult r2 = AssertionSuccess() << "abc";
5074  EXPECT_TRUE(r2);
5075  EXPECT_STREQ("abc", r2.message());
5076 
5078  EXPECT_FALSE(r3);
5079  EXPECT_STREQ("", r3.message());
5080 
5081  AssertionResult r4 = AssertionFailure() << "def";
5082  EXPECT_FALSE(r4);
5083  EXPECT_STREQ("def", r4.message());
5084 
5085  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5086  EXPECT_FALSE(r5);
5087  EXPECT_STREQ("ghi", r5.message());
5088 }
5089 
5090 // Tests that the negation flips the predicate result but keeps the message.
5091 TEST(AssertionResultTest, NegationWorks) {
5092  AssertionResult r1 = AssertionSuccess() << "abc";
5093  EXPECT_FALSE(!r1);
5094  EXPECT_STREQ("abc", (!r1).message());
5095 
5096  AssertionResult r2 = AssertionFailure() << "def";
5097  EXPECT_TRUE(!r2);
5098  EXPECT_STREQ("def", (!r2).message());
5099 }
5100 
5101 TEST(AssertionResultTest, StreamingWorks) {
5103  r << "abc" << 'd' << 0 << true;
5104  EXPECT_STREQ("abcd0true", r.message());
5105 }
5106 
5107 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5109  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5110  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5111 }
5112 
5113 // The next test uses explicit conversion operators -- a C++11 feature.
5114 #if GTEST_LANG_CXX11
5115 
5116 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5117  struct ExplicitlyConvertibleToBool {
5118  explicit operator bool() const { return value; }
5119  bool value;
5120  };
5121  ExplicitlyConvertibleToBool v1 = {false};
5122  ExplicitlyConvertibleToBool v2 = {true};
5123  EXPECT_FALSE(v1);
5124  EXPECT_TRUE(v2);
5125 }
5126 
5127 #endif // GTEST_LANG_CXX11
5128 
5130  operator AssertionResult() const { return AssertionResult(true); }
5131 };
5132 
5133 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5135  EXPECT_TRUE(obj);
5136 }
5137 
5138 // Tests streaming a user type whose definition and operator << are
5139 // both in the global namespace.
5140 class Base {
5141  public:
5142  explicit Base(int an_x) : x_(an_x) {}
5143  int x() const { return x_; }
5144  private:
5145  int x_;
5146 };
5147 std::ostream& operator<<(std::ostream& os,
5148  const Base& val) {
5149  return os << val.x();
5150 }
5151 std::ostream& operator<<(std::ostream& os,
5152  const Base* pointer) {
5153  return os << "(" << pointer->x() << ")";
5154 }
5155 
5156 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5157  Message msg;
5158  Base a(1);
5159 
5160  msg << a << &a; // Uses ::operator<<.
5161  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5162 }
5163 
5164 // Tests streaming a user type whose definition and operator<< are
5165 // both in an unnamed namespace.
5166 namespace {
5167 class MyTypeInUnnamedNameSpace : public Base {
5168  public:
5169  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5170 };
5171 std::ostream& operator<<(std::ostream& os,
5172  const MyTypeInUnnamedNameSpace& val) {
5173  return os << val.x();
5174 }
5175 std::ostream& operator<<(std::ostream& os,
5176  const MyTypeInUnnamedNameSpace* pointer) {
5177  return os << "(" << pointer->x() << ")";
5178 }
5179 } // namespace
5180 
5181 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5182  Message msg;
5183  MyTypeInUnnamedNameSpace a(1);
5184 
5185  msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5186  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5187 }
5188 
5189 // Tests streaming a user type whose definition and operator<< are
5190 // both in a user namespace.
5191 namespace namespace1 {
5192 class MyTypeInNameSpace1 : public Base {
5193  public:
5194  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5195 };
5196 std::ostream& operator<<(std::ostream& os,
5197  const MyTypeInNameSpace1& val) {
5198  return os << val.x();
5199 }
5200 std::ostream& operator<<(std::ostream& os,
5201  const MyTypeInNameSpace1* pointer) {
5202  return os << "(" << pointer->x() << ")";
5203 }
5204 } // namespace namespace1
5205 
5206 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5207  Message msg;
5209 
5210  msg << a << &a; // Uses namespace1::operator<<.
5211  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5212 }
5213 
5214 // Tests streaming a user type whose definition is in a user namespace
5215 // but whose operator<< is in the global namespace.
5216 namespace namespace2 {
5217 class MyTypeInNameSpace2 : public ::Base {
5218  public:
5219  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5220 };
5221 } // namespace namespace2
5222 std::ostream& operator<<(std::ostream& os,
5223  const namespace2::MyTypeInNameSpace2& val) {
5224  return os << val.x();
5225 }
5226 std::ostream& operator<<(std::ostream& os,
5227  const namespace2::MyTypeInNameSpace2* pointer) {
5228  return os << "(" << pointer->x() << ")";
5229 }
5230 
5231 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5232  Message msg;
5234 
5235  msg << a << &a; // Uses ::operator<<.
5236  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5237 }
5238 
5239 // Tests streaming NULL pointers to testing::Message.
5240 TEST(MessageTest, NullPointers) {
5241  Message msg;
5242  char* const p1 = NULL;
5243  unsigned char* const p2 = NULL;
5244  int* p3 = NULL;
5245  double* p4 = NULL;
5246  bool* p5 = NULL;
5247  Message* p6 = NULL;
5248 
5249  msg << p1 << p2 << p3 << p4 << p5 << p6;
5250  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5251  msg.GetString().c_str());
5252 }
5253 
5254 // Tests streaming wide strings to testing::Message.
5255 TEST(MessageTest, WideStrings) {
5256  // Streams a NULL of type const wchar_t*.
5257  const wchar_t* const_wstr = NULL;
5258  EXPECT_STREQ("(null)",
5259  (Message() << const_wstr).GetString().c_str());
5260 
5261  // Streams a NULL of type wchar_t*.
5262  wchar_t* wstr = NULL;
5263  EXPECT_STREQ("(null)",
5264  (Message() << wstr).GetString().c_str());
5265 
5266  // Streams a non-NULL of type const wchar_t*.
5267  const_wstr = L"abc\x8119";
5268  EXPECT_STREQ("abc\xe8\x84\x99",
5269  (Message() << const_wstr).GetString().c_str());
5270 
5271  // Streams a non-NULL of type wchar_t*.
5272  wstr = const_cast<wchar_t*>(const_wstr);
5273  EXPECT_STREQ("abc\xe8\x84\x99",
5274  (Message() << wstr).GetString().c_str());
5275 }
5276 
5277 
5278 // This line tests that we can define tests in the testing namespace.
5279 namespace testing {
5280 
5281 // Tests the TestInfo class.
5282 
5283 class TestInfoTest : public Test {
5284  protected:
5285  static const TestInfo* GetTestInfo(const char* test_name) {
5286  const TestCase* const test_case = GetUnitTestImpl()->
5287  GetTestCase("TestInfoTest", "", NULL, NULL);
5288 
5289  for (int i = 0; i < test_case->total_test_count(); ++i) {
5290  const TestInfo* const test_info = test_case->GetTestInfo(i);
5291  if (strcmp(test_name, test_info->name()) == 0)
5292  return test_info;
5293  }
5294  return NULL;
5295  }
5296 
5297  static const TestResult* GetTestResult(
5298  const TestInfo* test_info) {
5299  return test_info->result();
5300  }
5301 };
5302 
5303 // Tests TestInfo::test_case_name() and TestInfo::name().
5305  const TestInfo* const test_info = GetTestInfo("Names");
5306 
5307  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5308  ASSERT_STREQ("Names", test_info->name());
5309 }
5310 
5311 // Tests TestInfo::result().
5313  const TestInfo* const test_info = GetTestInfo("result");
5314 
5315  // Initially, there is no TestPartResult for this test.
5316  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5317 
5318  // After the previous assertion, there is still none.
5319  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5320 }
5321 
5322 // Tests setting up and tearing down a test case.
5323 
5324 class SetUpTestCaseTest : public Test {
5325  protected:
5326  // This will be called once before the first test in this test case
5327  // is run.
5328  static void SetUpTestCase() {
5329  printf("Setting up the test case . . .\n");
5330 
5331  // Initializes some shared resource. In this simple example, we
5332  // just create a C string. More complex stuff can be done if
5333  // desired.
5334  shared_resource_ = "123";
5335 
5336  // Increments the number of test cases that have been set up.
5337  counter_++;
5338 
5339  // SetUpTestCase() should be called only once.
5340  EXPECT_EQ(1, counter_);
5341  }
5342 
5343  // This will be called once after the last test in this test case is
5344  // run.
5345  static void TearDownTestCase() {
5346  printf("Tearing down the test case . . .\n");
5347 
5348  // Decrements the number of test cases that have been set up.
5349  counter_--;
5350 
5351  // TearDownTestCase() should be called only once.
5352  EXPECT_EQ(0, counter_);
5353 
5354  // Cleans up the shared resource.
5355  shared_resource_ = NULL;
5356  }
5357 
5358  // This will be called before each test in this test case.
5359  virtual void SetUp() {
5360  // SetUpTestCase() should be called only once, so counter_ should
5361  // always be 1.
5362  EXPECT_EQ(1, counter_);
5363  }
5364 
5365  // Number of test cases that have been set up.
5366  static int counter_;
5367 
5368  // Some resource to be shared by all tests in this test case.
5369  static const char* shared_resource_;
5370 };
5371 
5373 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5374 
5375 // A test that uses the shared resource.
5377  EXPECT_STRNE(NULL, shared_resource_);
5378 }
5379 
5380 // Another test that uses the shared resource.
5382  EXPECT_STREQ("123", shared_resource_);
5383 }
5384 
5385 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5386 
5387 // The Flags struct stores a copy of all Google Test flags.
5388 struct Flags {
5389  // Constructs a Flags struct where each flag has its default value.
5390  Flags() : also_run_disabled_tests(false),
5391  break_on_failure(false),
5392  catch_exceptions(false),
5393  death_test_use_fork(false),
5394  filter(""),
5395  list_tests(false),
5396  output(""),
5397  print_time(true),
5398  random_seed(0),
5399  repeat(1),
5400  shuffle(false),
5401  stack_trace_depth(kMaxStackTraceDepth),
5402  stream_result_to(""),
5403  throw_on_failure(false) {}
5404 
5405  // Factory methods.
5406 
5407  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5408  // the given value.
5409  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5410  Flags flags;
5411  flags.also_run_disabled_tests = also_run_disabled_tests;
5412  return flags;
5413  }
5414 
5415  // Creates a Flags struct where the gtest_break_on_failure flag has
5416  // the given value.
5417  static Flags BreakOnFailure(bool break_on_failure) {
5418  Flags flags;
5419  flags.break_on_failure = break_on_failure;
5420  return flags;
5421  }
5422 
5423  // Creates a Flags struct where the gtest_catch_exceptions flag has
5424  // the given value.
5425  static Flags CatchExceptions(bool catch_exceptions) {
5426  Flags flags;
5427  flags.catch_exceptions = catch_exceptions;
5428  return flags;
5429  }
5430 
5431  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5432  // the given value.
5433  static Flags DeathTestUseFork(bool death_test_use_fork) {
5434  Flags flags;
5435  flags.death_test_use_fork = death_test_use_fork;
5436  return flags;
5437  }
5438 
5439  // Creates a Flags struct where the gtest_filter flag has the given
5440  // value.
5441  static Flags Filter(const char* filter) {
5442  Flags flags;
5443  flags.filter = filter;
5444  return flags;
5445  }
5446 
5447  // Creates a Flags struct where the gtest_list_tests flag has the
5448  // given value.
5449  static Flags ListTests(bool list_tests) {
5450  Flags flags;
5451  flags.list_tests = list_tests;
5452  return flags;
5453  }
5454 
5455  // Creates a Flags struct where the gtest_output flag has the given
5456  // value.
5457  static Flags Output(const char* output) {
5458  Flags flags;
5459  flags.output = output;
5460  return flags;
5461  }
5462 
5463  // Creates a Flags struct where the gtest_print_time flag has the given
5464  // value.
5465  static Flags PrintTime(bool print_time) {
5466  Flags flags;
5467  flags.print_time = print_time;
5468  return flags;
5469  }
5470 
5471  // Creates a Flags struct where the gtest_random_seed flag has
5472  // the given value.
5473  static Flags RandomSeed(Int32 random_seed) {
5474  Flags flags;
5475  flags.random_seed = random_seed;
5476  return flags;
5477  }
5478 
5479  // Creates a Flags struct where the gtest_repeat flag has the given
5480  // value.
5481  static Flags Repeat(Int32 repeat) {
5482  Flags flags;
5483  flags.repeat = repeat;
5484  return flags;
5485  }
5486 
5487  // Creates a Flags struct where the gtest_shuffle flag has
5488  // the given value.
5489  static Flags Shuffle(bool shuffle) {
5490  Flags flags;
5491  flags.shuffle = shuffle;
5492  return flags;
5493  }
5494 
5495  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5496  // the given value.
5497  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5498  Flags flags;
5499  flags.stack_trace_depth = stack_trace_depth;
5500  return flags;
5501  }
5502 
5503  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5504  // the given value.
5505  static Flags StreamResultTo(const char* stream_result_to) {
5506  Flags flags;
5507  flags.stream_result_to = stream_result_to;
5508  return flags;
5509  }
5510 
5511  // Creates a Flags struct where the gtest_throw_on_failure flag has
5512  // the given value.
5513  static Flags ThrowOnFailure(bool throw_on_failure) {
5514  Flags flags;
5515  flags.throw_on_failure = throw_on_failure;
5516  return flags;
5517  }
5518 
5519  // These fields store the flag values.
5524  const char* filter;
5526  const char* output;
5530  bool shuffle;
5532  const char* stream_result_to;
5534 };
5535 
5536 // Fixture for testing InitGoogleTest().
5537 class InitGoogleTestTest : public Test {
5538  protected:
5539  // Clears the flags before each test.
5540  virtual void SetUp() {
5541  GTEST_FLAG(also_run_disabled_tests) = false;
5542  GTEST_FLAG(break_on_failure) = false;
5543  GTEST_FLAG(catch_exceptions) = false;
5544  GTEST_FLAG(death_test_use_fork) = false;
5545  GTEST_FLAG(filter) = "";
5546  GTEST_FLAG(list_tests) = false;
5547  GTEST_FLAG(output) = "";
5548  GTEST_FLAG(print_time) = true;
5549  GTEST_FLAG(random_seed) = 0;
5550  GTEST_FLAG(repeat) = 1;
5551  GTEST_FLAG(shuffle) = false;
5552  GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5553  GTEST_FLAG(stream_result_to) = "";
5554  GTEST_FLAG(throw_on_failure) = false;
5555  }
5556 
5557  // Asserts that two narrow or wide string arrays are equal.
5558  template <typename CharType>
5559  static void AssertStringArrayEq(size_t size1, CharType** array1,
5560  size_t size2, CharType** array2) {
5561  ASSERT_EQ(size1, size2) << " Array sizes different.";
5562 
5563  for (size_t i = 0; i != size1; i++) {
5564  ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5565  }
5566  }
5567 
5568  // Verifies that the flag values match the expected values.
5569  static void CheckFlags(const Flags& expected) {
5571  GTEST_FLAG(also_run_disabled_tests));
5572  EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5573  EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5574  EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5575  EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5576  EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5577  EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5578  EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5579  EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5580  EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5581  EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5582  EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5583  EXPECT_STREQ(expected.stream_result_to,
5584  GTEST_FLAG(stream_result_to).c_str());
5585  EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5586  }
5587 
5588  // Parses a command line (specified by argc1 and argv1), then
5589  // verifies that the flag values are expected and that the
5590  // recognized flags are removed from the command line.
5591  template <typename CharType>
5592  static void TestParsingFlags(int argc1, const CharType** argv1,
5593  int argc2, const CharType** argv2,
5594  const Flags& expected, bool should_print_help) {
5595  const bool saved_help_flag = ::testing::internal::g_help_flag;
5597 
5598 #if GTEST_HAS_STREAM_REDIRECTION
5599  CaptureStdout();
5600 #endif
5601 
5602  // Parses the command line.
5603  internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5604 
5605 #if GTEST_HAS_STREAM_REDIRECTION
5606  const std::string captured_stdout = GetCapturedStdout();
5607 #endif
5608 
5609  // Verifies the flag values.
5610  CheckFlags(expected);
5611 
5612  // Verifies that the recognized flags are removed from the command
5613  // line.
5614  AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5615 
5616  // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5617  // help message for the flags it recognizes.
5618  EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5619 
5620 #if GTEST_HAS_STREAM_REDIRECTION
5621  const char* const expected_help_fragment =
5622  "This program contains tests written using";
5623  if (should_print_help) {
5624  EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5625  } else {
5627  expected_help_fragment, captured_stdout);
5628  }
5629 #endif // GTEST_HAS_STREAM_REDIRECTION
5630 
5631  ::testing::internal::g_help_flag = saved_help_flag;
5632  }
5633 
5634  // This macro wraps TestParsingFlags s.t. the user doesn't need
5635  // to specify the array sizes.
5636 
5637 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5638  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5639  sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5640  expected, should_print_help)
5641 };
5642 
5643 // Tests parsing an empty command line.
5645  const char* argv[] = {
5646  NULL
5647  };
5648 
5649  const char* argv2[] = {
5650  NULL
5651  };
5652 
5653  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5654 }
5655 
5656 // Tests parsing a command line that has no flag.
5658  const char* argv[] = {
5659  "foo.exe",
5660  NULL
5661  };
5662 
5663  const char* argv2[] = {
5664  "foo.exe",
5665  NULL
5666  };
5667 
5668  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5669 }
5670 
5671 // Tests parsing a bad --gtest_filter flag.
5673  const char* argv[] = {
5674  "foo.exe",
5675  "--gtest_filter",
5676  NULL
5677  };
5678 
5679  const char* argv2[] = {
5680  "foo.exe",
5681  "--gtest_filter",
5682  NULL
5683  };
5684 
5685  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5686 }
5687 
5688 // Tests parsing an empty --gtest_filter flag.
5690  const char* argv[] = {
5691  "foo.exe",
5692  "--gtest_filter=",
5693  NULL
5694  };
5695 
5696  const char* argv2[] = {
5697  "foo.exe",
5698  NULL
5699  };
5700 
5701  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5702 }
5703 
5704 // Tests parsing a non-empty --gtest_filter flag.
5705 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5706  const char* argv[] = {
5707  "foo.exe",
5708  "--gtest_filter=abc",
5709  NULL
5710  };
5711 
5712  const char* argv2[] = {
5713  "foo.exe",
5714  NULL
5715  };
5716 
5717  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5718 }
5719 
5720 // Tests parsing --gtest_break_on_failure.
5721 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5722  const char* argv[] = {
5723  "foo.exe",
5724  "--gtest_break_on_failure",
5725  NULL
5726 };
5727 
5728  const char* argv2[] = {
5729  "foo.exe",
5730  NULL
5731  };
5732 
5733  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5734 }
5735 
5736 // Tests parsing --gtest_break_on_failure=0.
5737 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5738  const char* argv[] = {
5739  "foo.exe",
5740  "--gtest_break_on_failure=0",
5741  NULL
5742  };
5743 
5744  const char* argv2[] = {
5745  "foo.exe",
5746  NULL
5747  };
5748 
5749  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5750 }
5751 
5752 // Tests parsing --gtest_break_on_failure=f.
5753 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5754  const char* argv[] = {
5755  "foo.exe",
5756  "--gtest_break_on_failure=f",
5757  NULL
5758  };
5759 
5760  const char* argv2[] = {
5761  "foo.exe",
5762  NULL
5763  };
5764 
5765  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5766 }
5767 
5768 // Tests parsing --gtest_break_on_failure=F.
5769 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5770  const char* argv[] = {
5771  "foo.exe",
5772  "--gtest_break_on_failure=F",
5773  NULL
5774  };
5775 
5776  const char* argv2[] = {
5777  "foo.exe",
5778  NULL
5779  };
5780 
5781  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5782 }
5783 
5784 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5785 // definition.
5786 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5787  const char* argv[] = {
5788  "foo.exe",
5789  "--gtest_break_on_failure=1",
5790  NULL
5791  };
5792 
5793  const char* argv2[] = {
5794  "foo.exe",
5795  NULL
5796  };
5797 
5798  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5799 }
5800 
5801 // Tests parsing --gtest_catch_exceptions.
5802 TEST_F(InitGoogleTestTest, CatchExceptions) {
5803  const char* argv[] = {
5804  "foo.exe",
5805  "--gtest_catch_exceptions",
5806  NULL
5807  };
5808 
5809  const char* argv2[] = {
5810  "foo.exe",
5811  NULL
5812  };
5813 
5814  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5815 }
5816 
5817 // Tests parsing --gtest_death_test_use_fork.
5818 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5819  const char* argv[] = {
5820  "foo.exe",
5821  "--gtest_death_test_use_fork",
5822  NULL
5823  };
5824 
5825  const char* argv2[] = {
5826  "foo.exe",
5827  NULL
5828  };
5829 
5830  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5831 }
5832 
5833 // Tests having the same flag twice with different values. The
5834 // expected behavior is that the one coming last takes precedence.
5835 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5836  const char* argv[] = {
5837  "foo.exe",
5838  "--gtest_filter=a",
5839  "--gtest_filter=b",
5840  NULL
5841  };
5842 
5843  const char* argv2[] = {
5844  "foo.exe",
5845  NULL
5846  };
5847 
5848  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5849 }
5850 
5851 // Tests having an unrecognized flag on the command line.
5852 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5853  const char* argv[] = {
5854  "foo.exe",
5855  "--gtest_break_on_failure",
5856  "bar", // Unrecognized by Google Test.
5857  "--gtest_filter=b",
5858  NULL
5859  };
5860 
5861  const char* argv2[] = {
5862  "foo.exe",
5863  "bar",
5864  NULL
5865  };
5866 
5867  Flags flags;
5868  flags.break_on_failure = true;
5869  flags.filter = "b";
5870  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5871 }
5872 
5873 // Tests having a --gtest_list_tests flag
5874 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5875  const char* argv[] = {
5876  "foo.exe",
5877  "--gtest_list_tests",
5878  NULL
5879  };
5880 
5881  const char* argv2[] = {
5882  "foo.exe",
5883  NULL
5884  };
5885 
5886  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5887 }
5888 
5889 // Tests having a --gtest_list_tests flag with a "true" value
5890 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5891  const char* argv[] = {
5892  "foo.exe",
5893  "--gtest_list_tests=1",
5894  NULL
5895  };
5896 
5897  const char* argv2[] = {
5898  "foo.exe",
5899  NULL
5900  };
5901 
5902  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5903 }
5904 
5905 // Tests having a --gtest_list_tests flag with a "false" value
5906 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5907  const char* argv[] = {
5908  "foo.exe",
5909  "--gtest_list_tests=0",
5910  NULL
5911  };
5912 
5913  const char* argv2[] = {
5914  "foo.exe",
5915  NULL
5916  };
5917 
5918  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5919 }
5920 
5921 // Tests parsing --gtest_list_tests=f.
5922 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5923  const char* argv[] = {
5924  "foo.exe",
5925  "--gtest_list_tests=f",
5926  NULL
5927  };
5928 
5929  const char* argv2[] = {
5930  "foo.exe",
5931  NULL
5932  };
5933 
5934  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5935 }
5936 
5937 // Tests parsing --gtest_list_tests=F.
5938 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5939  const char* argv[] = {
5940  "foo.exe",
5941  "--gtest_list_tests=F",
5942  NULL
5943  };
5944 
5945  const char* argv2[] = {
5946  "foo.exe",
5947  NULL
5948  };
5949 
5950  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5951 }
5952 
5953 // Tests parsing --gtest_output (invalid).
5955  const char* argv[] = {
5956  "foo.exe",
5957  "--gtest_output",
5958  NULL
5959  };
5960 
5961  const char* argv2[] = {
5962  "foo.exe",
5963  "--gtest_output",
5964  NULL
5965  };
5966 
5967  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5968 }
5969 
5970 // Tests parsing --gtest_output=xml
5972  const char* argv[] = {
5973  "foo.exe",
5974  "--gtest_output=xml",
5975  NULL
5976  };
5977 
5978  const char* argv2[] = {
5979  "foo.exe",
5980  NULL
5981  };
5982 
5983  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5984 }
5985 
5986 // Tests parsing --gtest_output=xml:file
5987 TEST_F(InitGoogleTestTest, OutputXmlFile) {
5988  const char* argv[] = {
5989  "foo.exe",
5990  "--gtest_output=xml:file",
5991  NULL
5992  };
5993 
5994  const char* argv2[] = {
5995  "foo.exe",
5996  NULL
5997  };
5998 
5999  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6000 }
6001 
6002 // Tests parsing --gtest_output=xml:directory/path/
6003 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
6004  const char* argv[] = {
6005  "foo.exe",
6006  "--gtest_output=xml:directory/path/",
6007  NULL
6008  };
6009 
6010  const char* argv2[] = {
6011  "foo.exe",
6012  NULL
6013  };
6014 
6015  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6016  Flags::Output("xml:directory/path/"), false);
6017 }
6018 
6019 // Tests having a --gtest_print_time flag
6020 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
6021  const char* argv[] = {
6022  "foo.exe",
6023  "--gtest_print_time",
6024  NULL
6025  };
6026 
6027  const char* argv2[] = {
6028  "foo.exe",
6029  NULL
6030  };
6031 
6032  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6033 }
6034 
6035 // Tests having a --gtest_print_time flag with a "true" value
6036 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
6037  const char* argv[] = {
6038  "foo.exe",
6039  "--gtest_print_time=1",
6040  NULL
6041  };
6042 
6043  const char* argv2[] = {
6044  "foo.exe",
6045  NULL
6046  };
6047 
6048  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6049 }
6050 
6051 // Tests having a --gtest_print_time flag with a "false" value
6052 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
6053  const char* argv[] = {
6054  "foo.exe",
6055  "--gtest_print_time=0",
6056  NULL
6057  };
6058 
6059  const char* argv2[] = {
6060  "foo.exe",
6061  NULL
6062  };
6063 
6064  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6065 }
6066 
6067 // Tests parsing --gtest_print_time=f.
6068 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
6069  const char* argv[] = {
6070  "foo.exe",
6071  "--gtest_print_time=f",
6072  NULL
6073  };
6074 
6075  const char* argv2[] = {
6076  "foo.exe",
6077  NULL
6078  };
6079 
6080  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6081 }
6082 
6083 // Tests parsing --gtest_print_time=F.
6084 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
6085  const char* argv[] = {
6086  "foo.exe",
6087  "--gtest_print_time=F",
6088  NULL
6089  };
6090 
6091  const char* argv2[] = {
6092  "foo.exe",
6093  NULL
6094  };
6095 
6096  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6097 }
6098 
6099 // Tests parsing --gtest_random_seed=number
6101  const char* argv[] = {
6102  "foo.exe",
6103  "--gtest_random_seed=1000",
6104  NULL
6105  };
6106 
6107  const char* argv2[] = {
6108  "foo.exe",
6109  NULL
6110  };
6111 
6112  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6113 }
6114 
6115 // Tests parsing --gtest_repeat=number
6117  const char* argv[] = {
6118  "foo.exe",
6119  "--gtest_repeat=1000",
6120  NULL
6121  };
6122 
6123  const char* argv2[] = {
6124  "foo.exe",
6125  NULL
6126  };
6127 
6128  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6129 }
6130 
6131 // Tests having a --gtest_also_run_disabled_tests flag
6132 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6133  const char* argv[] = {
6134  "foo.exe",
6135  "--gtest_also_run_disabled_tests",
6136  NULL
6137  };
6138 
6139  const char* argv2[] = {
6140  "foo.exe",
6141  NULL
6142  };
6143 
6144  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6145  Flags::AlsoRunDisabledTests(true), false);
6146 }
6147 
6148 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6149 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6150  const char* argv[] = {
6151  "foo.exe",
6152  "--gtest_also_run_disabled_tests=1",
6153  NULL
6154  };
6155 
6156  const char* argv2[] = {
6157  "foo.exe",
6158  NULL
6159  };
6160 
6161  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6162  Flags::AlsoRunDisabledTests(true), false);
6163 }
6164 
6165 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6166 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6167  const char* argv[] = {
6168  "foo.exe",
6169  "--gtest_also_run_disabled_tests=0",
6170  NULL
6171  };
6172 
6173  const char* argv2[] = {
6174  "foo.exe",
6175  NULL
6176  };
6177 
6178  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6179  Flags::AlsoRunDisabledTests(false), false);
6180 }
6181 
6182 // Tests parsing --gtest_shuffle.
6183 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6184  const char* argv[] = {
6185  "foo.exe",
6186  "--gtest_shuffle",
6187  NULL
6188 };
6189 
6190  const char* argv2[] = {
6191  "foo.exe",
6192  NULL
6193  };
6194 
6195  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6196 }
6197 
6198 // Tests parsing --gtest_shuffle=0.
6199 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6200  const char* argv[] = {
6201  "foo.exe",
6202  "--gtest_shuffle=0",
6203  NULL
6204  };
6205 
6206  const char* argv2[] = {
6207  "foo.exe",
6208  NULL
6209  };
6210 
6211  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6212 }
6213 
6214 // Tests parsing a --gtest_shuffle flag that has a "true"
6215 // definition.
6217  const char* argv[] = {
6218  "foo.exe",
6219  "--gtest_shuffle=1",
6220  NULL
6221  };
6222 
6223  const char* argv2[] = {
6224  "foo.exe",
6225  NULL
6226  };
6227 
6228  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6229 }
6230 
6231 // Tests parsing --gtest_stack_trace_depth=number.
6232 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6233  const char* argv[] = {
6234  "foo.exe",
6235  "--gtest_stack_trace_depth=5",
6236  NULL
6237  };
6238 
6239  const char* argv2[] = {
6240  "foo.exe",
6241  NULL
6242  };
6243 
6244  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6245 }
6246 
6247 TEST_F(InitGoogleTestTest, StreamResultTo) {
6248  const char* argv[] = {
6249  "foo.exe",
6250  "--gtest_stream_result_to=localhost:1234",
6251  NULL
6252  };
6253 
6254  const char* argv2[] = {
6255  "foo.exe",
6256  NULL
6257  };
6258 
6260  argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6261 }
6262 
6263 // Tests parsing --gtest_throw_on_failure.
6264 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6265  const char* argv[] = {
6266  "foo.exe",
6267  "--gtest_throw_on_failure",
6268  NULL
6269 };
6270 
6271  const char* argv2[] = {
6272  "foo.exe",
6273  NULL
6274  };
6275 
6276  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6277 }
6278 
6279 // Tests parsing --gtest_throw_on_failure=0.
6280 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6281  const char* argv[] = {
6282  "foo.exe",
6283  "--gtest_throw_on_failure=0",
6284  NULL
6285  };
6286 
6287  const char* argv2[] = {
6288  "foo.exe",
6289  NULL
6290  };
6291 
6292  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6293 }
6294 
6295 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6296 // definition.
6297 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6298  const char* argv[] = {
6299  "foo.exe",
6300  "--gtest_throw_on_failure=1",
6301  NULL
6302  };
6303 
6304  const char* argv2[] = {
6305  "foo.exe",
6306  NULL
6307  };
6308 
6309  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6310 }
6311 
6312 #if GTEST_OS_WINDOWS
6313 // Tests parsing wide strings.
6314 TEST_F(InitGoogleTestTest, WideStrings) {
6315  const wchar_t* argv[] = {
6316  L"foo.exe",
6317  L"--gtest_filter=Foo*",
6318  L"--gtest_list_tests=1",
6319  L"--gtest_break_on_failure",
6320  L"--non_gtest_flag",
6321  NULL
6322  };
6323 
6324  const wchar_t* argv2[] = {
6325  L"foo.exe",
6326  L"--non_gtest_flag",
6327  NULL
6328  };
6329 
6330  Flags expected_flags;
6331  expected_flags.break_on_failure = true;
6332  expected_flags.filter = "Foo*";
6333  expected_flags.list_tests = true;
6334 
6335  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6336 }
6337 #endif // GTEST_OS_WINDOWS
6338 
6339 // Tests current_test_info() in UnitTest.
6340 class CurrentTestInfoTest : public Test {
6341  protected:
6342  // Tests that current_test_info() returns NULL before the first test in
6343  // the test case is run.
6344  static void SetUpTestCase() {
6345  // There should be no tests running at this point.
6346  const TestInfo* test_info =
6348  EXPECT_TRUE(test_info == NULL)
6349  << "There should be no tests running at this point.";
6350  }
6351 
6352  // Tests that current_test_info() returns NULL after the last test in
6353  // the test case has run.
6354  static void TearDownTestCase() {
6355  const TestInfo* test_info =
6357  EXPECT_TRUE(test_info == NULL)
6358  << "There should be no tests running at this point.";
6359  }
6360 };
6361 
6362 // Tests that current_test_info() returns TestInfo for currently running
6363 // test by checking the expected test name against the actual one.
6364 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6365  const TestInfo* test_info =
6367  ASSERT_TRUE(NULL != test_info)
6368  << "There is a test running so we should have a valid TestInfo.";
6369  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6370  << "Expected the name of the currently running test case.";
6371  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6372  << "Expected the name of the currently running test.";
6373 }
6374 
6375 // Tests that current_test_info() returns TestInfo for currently running
6376 // test by checking the expected test name against the actual one. We
6377 // use this test to see that the TestInfo object actually changed from
6378 // the previous invocation.
6379 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6380  const TestInfo* test_info =
6382  ASSERT_TRUE(NULL != test_info)
6383  << "There is a test running so we should have a valid TestInfo.";
6384  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6385  << "Expected the name of the currently running test case.";
6386  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6387  << "Expected the name of the currently running test.";
6388 }
6389 
6390 } // namespace testing
6391 
6392 // These two lines test that we can define tests in a namespace that
6393 // has the name "testing" and is nested in another namespace.
6394 namespace my_namespace {
6395 namespace testing {
6396 
6397 // Makes sure that TEST knows to use ::testing::Test instead of
6398 // ::my_namespace::testing::Test.
6399 class Test {};
6400 
6401 // Makes sure that an assertion knows to use ::testing::Message instead of
6402 // ::my_namespace::testing::Message.
6403 class Message {};
6404 
6405 // Makes sure that an assertion knows to use
6406 // ::testing::AssertionResult instead of
6407 // ::my_namespace::testing::AssertionResult.
6409 
6410 // Tests that an assertion that should succeed works as expected.
6411 TEST(NestedTestingNamespaceTest, Success) {
6412  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6413 }
6414 
6415 // Tests that an assertion that should fail works as expected.
6416 TEST(NestedTestingNamespaceTest, Failure) {
6417  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6418  "This failure is expected.");
6419 }
6420 
6421 } // namespace testing
6422 } // namespace my_namespace
6423 
6424 // Tests that one can call superclass SetUp and TearDown methods--
6425 // that is, that they are not private.
6426 // No tests are based on this fixture; the test "passes" if it compiles
6427 // successfully.
6429  protected:
6430  virtual void SetUp() {
6431  Test::SetUp();
6432  }
6433  virtual void TearDown() {
6434  Test::TearDown();
6435  }
6436 };
6437 
6438 // StreamingAssertionsTest tests the streaming versions of a representative
6439 // sample of assertions.
6440 TEST(StreamingAssertionsTest, Unconditional) {
6441  SUCCEED() << "expected success";
6442  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6443  "expected failure");
6444  EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6445  "expected failure");
6446 }
6447 
6448 #ifdef __BORLANDC__
6449 // Silences warnings: "Condition is always true", "Unreachable code"
6450 # pragma option push -w-ccc -w-rch
6451 #endif
6452 
6453 TEST(StreamingAssertionsTest, Truth) {
6454  EXPECT_TRUE(true) << "unexpected failure";
6455  ASSERT_TRUE(true) << "unexpected failure";
6456  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6457  "expected failure");
6458  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6459  "expected failure");
6460 }
6461 
6462 TEST(StreamingAssertionsTest, Truth2) {
6463  EXPECT_FALSE(false) << "unexpected failure";
6464  ASSERT_FALSE(false) << "unexpected failure";
6465  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6466  "expected failure");
6467  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6468  "expected failure");
6469 }
6470 
6471 #ifdef __BORLANDC__
6472 // Restores warnings after previous "#pragma option push" supressed them
6473 # pragma option pop
6474 #endif
6475 
6476 TEST(StreamingAssertionsTest, IntegerEquals) {
6477  EXPECT_EQ(1, 1) << "unexpected failure";
6478  ASSERT_EQ(1, 1) << "unexpected failure";
6479  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6480  "expected failure");
6481  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6482  "expected failure");
6483 }
6484 
6485 TEST(StreamingAssertionsTest, IntegerLessThan) {
6486  EXPECT_LT(1, 2) << "unexpected failure";
6487  ASSERT_LT(1, 2) << "unexpected failure";
6488  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6489  "expected failure");
6490  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6491  "expected failure");
6492 }
6493 
6494 TEST(StreamingAssertionsTest, StringsEqual) {
6495  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6496  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6497  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6498  "expected failure");
6499  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6500  "expected failure");
6501 }
6502 
6503 TEST(StreamingAssertionsTest, StringsNotEqual) {
6504  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6505  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6506  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6507  "expected failure");
6508  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6509  "expected failure");
6510 }
6511 
6512 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6513  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6514  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6515  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6516  "expected failure");
6517  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6518  "expected failure");
6519 }
6520 
6521 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6522  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6523  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6524  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6525  "expected failure");
6526  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6527  "expected failure");
6528 }
6529 
6530 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6531  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6532  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6533  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6534  "expected failure");
6535  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6536  "expected failure");
6537 }
6538 
6539 #if GTEST_HAS_EXCEPTIONS
6540 
6541 TEST(StreamingAssertionsTest, Throw) {
6542  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6543  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6544  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6545  "expected failure", "expected failure");
6546  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6547  "expected failure", "expected failure");
6548 }
6549 
6550 TEST(StreamingAssertionsTest, NoThrow) {
6551  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6552  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6553  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6554  "expected failure", "expected failure");
6555  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6556  "expected failure", "expected failure");
6557 }
6558 
6559 TEST(StreamingAssertionsTest, AnyThrow) {
6560  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6561  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6562  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6563  "expected failure", "expected failure");
6564  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6565  "expected failure", "expected failure");
6566 }
6567 
6568 #endif // GTEST_HAS_EXCEPTIONS
6569 
6570 // Tests that Google Test correctly decides whether to use colors in the output.
6571 
6572 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6573  GTEST_FLAG(color) = "yes";
6574 
6575  SetEnv("TERM", "xterm"); // TERM supports colors.
6576  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6577  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6578 
6579  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6580  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6581  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6582 }
6583 
6584 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6585  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6586 
6587  GTEST_FLAG(color) = "True";
6588  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6589 
6590  GTEST_FLAG(color) = "t";
6591  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6592 
6593  GTEST_FLAG(color) = "1";
6594  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6595 }
6596 
6597 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6598  GTEST_FLAG(color) = "no";
6599 
6600  SetEnv("TERM", "xterm"); // TERM supports colors.
6601  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6602  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6603 
6604  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6605  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6606  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6607 }
6608 
6609 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6610  SetEnv("TERM", "xterm"); // TERM supports colors.
6611 
6612  GTEST_FLAG(color) = "F";
6613  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6614 
6615  GTEST_FLAG(color) = "0";
6616  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6617 
6618  GTEST_FLAG(color) = "unknown";
6619  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6620 }
6621 
6622 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6623  GTEST_FLAG(color) = "auto";
6624 
6625  SetEnv("TERM", "xterm"); // TERM supports colors.
6626  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6627  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6628 }
6629 
6630 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6631  GTEST_FLAG(color) = "auto";
6632 
6633 #if GTEST_OS_WINDOWS
6634  // On Windows, we ignore the TERM variable as it's usually not set.
6635 
6636  SetEnv("TERM", "dumb");
6637  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6638 
6639  SetEnv("TERM", "");
6640  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6641 
6642  SetEnv("TERM", "xterm");
6643  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6644 #else
6645  // On non-Windows platforms, we rely on TERM to determine if the
6646  // terminal supports colors.
6647 
6648  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6649  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6650 
6651  SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6652  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6653 
6654  SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6655  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6656 
6657  SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6658  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6659 
6660  SetEnv("TERM", "xterm"); // TERM supports colors.
6661  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6662 
6663  SetEnv("TERM", "xterm-color"); // TERM supports colors.
6664  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6665 
6666  SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6667  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6668 
6669  SetEnv("TERM", "screen"); // TERM supports colors.
6670  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6671 
6672  SetEnv("TERM", "screen-256color"); // TERM supports colors.
6673  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6674 
6675  SetEnv("TERM", "linux"); // TERM supports colors.
6676  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6677 
6678  SetEnv("TERM", "cygwin"); // TERM supports colors.
6679  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6680 #endif // GTEST_OS_WINDOWS
6681 }
6682 
6683 // Verifies that StaticAssertTypeEq works in a namespace scope.
6684 
6685 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6686 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6687  StaticAssertTypeEq<const int, const int>();
6688 
6689 // Verifies that StaticAssertTypeEq works in a class.
6690 
6691 template <typename T>
6693  public:
6694  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6695 };
6696 
6697 TEST(StaticAssertTypeEqTest, WorksInClass) {
6699 }
6700 
6701 // Verifies that StaticAssertTypeEq works inside a function.
6702 
6703 typedef int IntAlias;
6704 
6705 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6706  StaticAssertTypeEq<int, IntAlias>();
6707  StaticAssertTypeEq<int*, IntAlias*>();
6708 }
6709 
6710 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6712 
6713  // We don't have a stack walker in Google Test yet.
6714  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6715  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6716 }
6717 
6718 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6719  EXPECT_FALSE(HasNonfatalFailure());
6720 }
6721 
6722 static void FailFatally() { FAIL(); }
6723 
6724 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6725  FailFatally();
6726  const bool has_nonfatal_failure = HasNonfatalFailure();
6727  ClearCurrentTestPartResults();
6728  EXPECT_FALSE(has_nonfatal_failure);
6729 }
6730 
6731 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6732  ADD_FAILURE();
6733  const bool has_nonfatal_failure = HasNonfatalFailure();
6734  ClearCurrentTestPartResults();
6735  EXPECT_TRUE(has_nonfatal_failure);
6736 }
6737 
6738 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6739  FailFatally();
6740  ADD_FAILURE();
6741  const bool has_nonfatal_failure = HasNonfatalFailure();
6742  ClearCurrentTestPartResults();
6743  EXPECT_TRUE(has_nonfatal_failure);
6744 }
6745 
6746 // A wrapper for calling HasNonfatalFailure outside of a test body.
6749 }
6750 
6751 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6753 }
6754 
6755 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6756  ADD_FAILURE();
6757  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6758  ClearCurrentTestPartResults();
6759  EXPECT_TRUE(has_nonfatal_failure);
6760 }
6761 
6762 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6763  EXPECT_FALSE(HasFailure());
6764 }
6765 
6766 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6767  FailFatally();
6768  const bool has_failure = HasFailure();
6769  ClearCurrentTestPartResults();
6770  EXPECT_TRUE(has_failure);
6771 }
6772 
6773 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6774  ADD_FAILURE();
6775  const bool has_failure = HasFailure();
6776  ClearCurrentTestPartResults();
6777  EXPECT_TRUE(has_failure);
6778 }
6779 
6780 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6781  FailFatally();
6782  ADD_FAILURE();
6783  const bool has_failure = HasFailure();
6784  ClearCurrentTestPartResults();
6785  EXPECT_TRUE(has_failure);
6786 }
6787 
6788 // A wrapper for calling HasFailure outside of a test body.
6789 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6790 
6791 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6793 }
6794 
6795 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6796  ADD_FAILURE();
6797  const bool has_failure = HasFailureHelper();
6798  ClearCurrentTestPartResults();
6799  EXPECT_TRUE(has_failure);
6800 }
6801 
6803  public:
6804  TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
6805  TestListener(int* on_start_counter, bool* is_destroyed)
6806  : on_start_counter_(on_start_counter),
6807  is_destroyed_(is_destroyed) {}
6808 
6809  virtual ~TestListener() {
6810  if (is_destroyed_)
6811  *is_destroyed_ = true;
6812  }
6813 
6814  protected:
6815  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6816  if (on_start_counter_ != NULL)
6817  (*on_start_counter_)++;
6818  }
6819 
6820  private:
6823 };
6824 
6825 // Tests the constructor.
6826 TEST(TestEventListenersTest, ConstructionWorks) {
6827  TestEventListeners listeners;
6828 
6830  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6831  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6832 }
6833 
6834 // Tests that the TestEventListeners destructor deletes all the listeners it
6835 // owns.
6836 TEST(TestEventListenersTest, DestructionWorks) {
6837  bool default_result_printer_is_destroyed = false;
6838  bool default_xml_printer_is_destroyed = false;
6839  bool extra_listener_is_destroyed = false;
6840  TestListener* default_result_printer = new TestListener(
6841  NULL, &default_result_printer_is_destroyed);
6842  TestListener* default_xml_printer = new TestListener(
6843  NULL, &default_xml_printer_is_destroyed);
6844  TestListener* extra_listener = new TestListener(
6845  NULL, &extra_listener_is_destroyed);
6846 
6847  {
6848  TestEventListeners listeners;
6850  default_result_printer);
6852  default_xml_printer);
6853  listeners.Append(extra_listener);
6854  }
6855  EXPECT_TRUE(default_result_printer_is_destroyed);
6856  EXPECT_TRUE(default_xml_printer_is_destroyed);
6857  EXPECT_TRUE(extra_listener_is_destroyed);
6858 }
6859 
6860 // Tests that a listener Append'ed to a TestEventListeners list starts
6861 // receiving events.
6862 TEST(TestEventListenersTest, Append) {
6863  int on_start_counter = 0;
6864  bool is_destroyed = false;
6865  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6866  {
6867  TestEventListeners listeners;
6868  listeners.Append(listener);
6871  EXPECT_EQ(1, on_start_counter);
6872  }
6873  EXPECT_TRUE(is_destroyed);
6874 }
6875 
6876 // Tests that listeners receive events in the order they were appended to
6877 // the list, except for *End requests, which must be received in the reverse
6878 // order.
6880  public:
6881  SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6882  : vector_(vector), id_(id) {}
6883 
6884  protected:
6885  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6886  vector_->push_back(GetEventDescription("OnTestProgramStart"));
6887  }
6888 
6889  virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6890  vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6891  }
6892 
6893  virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6894  int /*iteration*/) {
6895  vector_->push_back(GetEventDescription("OnTestIterationStart"));
6896  }
6897 
6898  virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6899  int /*iteration*/) {
6900  vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6901  }
6902 
6903  private:
6904  std::string GetEventDescription(const char* method) {
6905  Message message;
6906  message << id_ << "." << method;
6907  return message.GetString();
6908  }
6909 
6910  std::vector<std::string>* vector_;
6911  const char* const id_;
6912 
6914 };
6915 
6916 TEST(EventListenerTest, AppendKeepsOrder) {
6917  std::vector<std::string> vec;
6918  TestEventListeners listeners;
6919  listeners.Append(new SequenceTestingListener(&vec, "1st"));
6920  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6921  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6922 
6925  ASSERT_EQ(3U, vec.size());
6926  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6927  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6928  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6929 
6930  vec.clear();
6933  ASSERT_EQ(3U, vec.size());
6934  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6935  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6936  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6937 
6938  vec.clear();
6940  *UnitTest::GetInstance(), 0);
6941  ASSERT_EQ(3U, vec.size());
6942  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6943  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6944  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6945 
6946  vec.clear();
6948  *UnitTest::GetInstance(), 0);
6949  ASSERT_EQ(3U, vec.size());
6950  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6951  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6952  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6953 }
6954 
6955 // Tests that a listener removed from a TestEventListeners list stops receiving
6956 // events and is not deleted when the list is destroyed.
6957 TEST(TestEventListenersTest, Release) {
6958  int on_start_counter = 0;
6959  bool is_destroyed = false;
6960  // Although Append passes the ownership of this object to the list,
6961  // the following calls release it, and we need to delete it before the
6962  // test ends.
6963  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6964  {
6965  TestEventListeners listeners;
6966  listeners.Append(listener);
6967  EXPECT_EQ(listener, listeners.Release(listener));
6970  EXPECT_TRUE(listeners.Release(listener) == NULL);
6971  }
6972  EXPECT_EQ(0, on_start_counter);
6973  EXPECT_FALSE(is_destroyed);
6974  delete listener;
6975 }
6976 
6977 // Tests that no events are forwarded when event forwarding is disabled.
6978 TEST(EventListenerTest, SuppressEventForwarding) {
6979  int on_start_counter = 0;
6980  TestListener* listener = new TestListener(&on_start_counter, NULL);
6981 
6982  TestEventListeners listeners;
6983  listeners.Append(listener);
6989  EXPECT_EQ(0, on_start_counter);
6990 }
6991 
6992 // Tests that events generated by Google Test are not forwarded in
6993 // death test subprocesses.
6994 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6997  *GetUnitTestImpl()->listeners())) << "expected failure";},
6998  "expected failure");
6999 }
7000 
7001 // Tests that a listener installed via SetDefaultResultPrinter() starts
7002 // receiving events and is returned via default_result_printer() and that
7003 // the previous default_result_printer is removed from the list and deleted.
7004 TEST(EventListenerTest, default_result_printer) {
7005  int on_start_counter = 0;
7006  bool is_destroyed = false;
7007  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7008 
7009  TestEventListeners listeners;
7011 
7012  EXPECT_EQ(listener, listeners.default_result_printer());
7013 
7016 
7017  EXPECT_EQ(1, on_start_counter);
7018 
7019  // Replacing default_result_printer with something else should remove it
7020  // from the list and destroy it.
7022 
7023  EXPECT_TRUE(listeners.default_result_printer() == NULL);
7024  EXPECT_TRUE(is_destroyed);
7025 
7026  // After broadcasting an event the counter is still the same, indicating
7027  // the listener is not in the list anymore.
7030  EXPECT_EQ(1, on_start_counter);
7031 }
7032 
7033 // Tests that the default_result_printer listener stops receiving events
7034 // when removed via Release and that is not owned by the list anymore.
7035 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7036  int on_start_counter = 0;
7037  bool is_destroyed = false;
7038  // Although Append passes the ownership of this object to the list,
7039  // the following calls release it, and we need to delete it before the
7040  // test ends.
7041  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7042  {
7043  TestEventListeners listeners;
7045 
7046  EXPECT_EQ(listener, listeners.Release(listener));
7047  EXPECT_TRUE(listeners.default_result_printer() == NULL);
7048  EXPECT_FALSE(is_destroyed);
7049 
7050  // Broadcasting events now should not affect default_result_printer.
7053  EXPECT_EQ(0, on_start_counter);
7054  }
7055  // Destroying the list should not affect the listener now, too.
7056  EXPECT_FALSE(is_destroyed);
7057  delete listener;
7058 }
7059 
7060 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7061 // receiving events and is returned via default_xml_generator() and that
7062 // the previous default_xml_generator is removed from the list and deleted.
7063 TEST(EventListenerTest, default_xml_generator) {
7064  int on_start_counter = 0;
7065  bool is_destroyed = false;
7066  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7067 
7068  TestEventListeners listeners;
7070 
7071  EXPECT_EQ(listener, listeners.default_xml_generator());
7072 
7075 
7076  EXPECT_EQ(1, on_start_counter);
7077 
7078  // Replacing default_xml_generator with something else should remove it
7079  // from the list and destroy it.
7081 
7082  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7083  EXPECT_TRUE(is_destroyed);
7084 
7085  // After broadcasting an event the counter is still the same, indicating
7086  // the listener is not in the list anymore.
7089  EXPECT_EQ(1, on_start_counter);
7090 }
7091 
7092 // Tests that the default_xml_generator listener stops receiving events
7093 // when removed via Release and that is not owned by the list anymore.
7094 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7095  int on_start_counter = 0;
7096  bool is_destroyed = false;
7097  // Although Append passes the ownership of this object to the list,
7098  // the following calls release it, and we need to delete it before the
7099  // test ends.
7100  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7101  {
7102  TestEventListeners listeners;
7104 
7105  EXPECT_EQ(listener, listeners.Release(listener));
7106  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7107  EXPECT_FALSE(is_destroyed);
7108 
7109  // Broadcasting events now should not affect default_xml_generator.
7112  EXPECT_EQ(0, on_start_counter);
7113  }
7114  // Destroying the list should not affect the listener now, too.
7115  EXPECT_FALSE(is_destroyed);
7116  delete listener;
7117 }
7118 
7119 // Sanity tests to ensure that the alternative, verbose spellings of
7120 // some of the macros work. We don't test them thoroughly as that
7121 // would be quite involved. Since their implementations are
7122 // straightforward, and they are rarely used, we'll just rely on the
7123 // users to tell us when they are broken.
7124 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
7125  GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
7126 
7127  // GTEST_FAIL is the same as FAIL.
7128  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7129  "An expected failure");
7130 
7131  // GTEST_ASSERT_XY is the same as ASSERT_XY.
7132 
7133  GTEST_ASSERT_EQ(0, 0);
7134  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7135  "An expected failure");
7136  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7137  "An expected failure");
7138 
7139  GTEST_ASSERT_NE(0, 1);
7140  GTEST_ASSERT_NE(1, 0);
7141  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7142  "An expected failure");
7143 
7144  GTEST_ASSERT_LE(0, 0);
7145  GTEST_ASSERT_LE(0, 1);
7146  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7147  "An expected failure");
7148 
7149  GTEST_ASSERT_LT(0, 1);
7150  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7151  "An expected failure");
7152  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7153  "An expected failure");
7154 
7155  GTEST_ASSERT_GE(0, 0);
7156  GTEST_ASSERT_GE(1, 0);
7157  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7158  "An expected failure");
7159 
7160  GTEST_ASSERT_GT(1, 0);
7161  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7162  "An expected failure");
7163  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7164  "An expected failure");
7165 }
7166 
7167 // Tests for internal utilities necessary for implementation of the universal
7168 // printing.
7169 // TODO(vladl@google.com): Find a better home for them.
7170 
7173 
7174 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
7175 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7177  const_true);
7179 }
7180 
7181 // Tests that IsAProtocolMessage<T>::value is true when T is
7182 // proto2::Message or a sub-class of it.
7183 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7186 }
7187 
7188 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7189 // ProtocolMessage nor a sub-class of it.
7190 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7193 }
7194 
7195 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7196 // equal.
7197 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7200 }
7201 
7202 // Tests that RemoveReference does not affect non-reference types.
7203 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7206 }
7207 
7208 // Tests that RemoveReference removes reference from reference types.
7209 TEST(RemoveReferenceTest, RemovesReference) {
7212 }
7213 
7214 // Tests GTEST_REMOVE_REFERENCE_.
7215 
7216 template <typename T1, typename T2>
7219 }
7220 
7221 TEST(RemoveReferenceTest, MacroVersion) {
7222  TestGTestRemoveReference<int, int>();
7223  TestGTestRemoveReference<const char, const char&>();
7224 }
7225 
7226 
7227 // Tests that RemoveConst does not affect non-const types.
7228 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7231 }
7232 
7233 // Tests that RemoveConst removes const from const types.
7234 TEST(RemoveConstTest, RemovesConst) {
7238 }
7239 
7240 // Tests GTEST_REMOVE_CONST_.
7241 
7242 template <typename T1, typename T2>
7245 }
7246 
7247 TEST(RemoveConstTest, MacroVersion) {
7248  TestGTestRemoveConst<int, int>();
7249  TestGTestRemoveConst<double&, double&>();
7250  TestGTestRemoveConst<char, const char>();
7251 }
7252 
7253 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7254 
7255 template <typename T1, typename T2>
7258 }
7259 
7260 TEST(RemoveReferenceToConstTest, Works) {
7261  TestGTestRemoveReferenceAndConst<int, int>();
7262  TestGTestRemoveReferenceAndConst<double, double&>();
7263  TestGTestRemoveReferenceAndConst<char, const char>();
7264  TestGTestRemoveReferenceAndConst<char, const char&>();
7265  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7266 }
7267 
7268 // Tests that AddReference does not affect reference types.
7269 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7272 }
7273 
7274 // Tests that AddReference adds reference to non-reference types.
7275 TEST(AddReferenceTest, AddsReference) {
7278 }
7279 
7280 // Tests GTEST_ADD_REFERENCE_.
7281 
7282 template <typename T1, typename T2>
7285 }
7286 
7287 TEST(AddReferenceTest, MacroVersion) {
7288  TestGTestAddReference<int&, int>();
7289  TestGTestAddReference<const char&, const char&>();
7290 }
7291 
7292 // Tests GTEST_REFERENCE_TO_CONST_.
7293 
7294 template <typename T1, typename T2>
7297 }
7298 
7299 TEST(GTestReferenceToConstTest, Works) {
7300  TestGTestReferenceToConst<const char&, char>();
7301  TestGTestReferenceToConst<const int&, const int>();
7302  TestGTestReferenceToConst<const double&, double>();
7303  TestGTestReferenceToConst<const std::string&, const std::string&>();
7304 }
7305 
7306 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
7307 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7310  const_false);
7311 }
7312 
7313 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7314 // be implicitly converted to T2.
7315 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7321  const ConversionHelperBase&>::value));
7324 }
7325 
7326 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7327 // cannot be implicitly converted to T2.
7328 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7334 }
7335 
7336 // Tests IsContainerTest.
7337 
7338 class NonContainer {};
7339 
7340 TEST(IsContainerTestTest, WorksForNonContainer) {
7341  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7342  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7343  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7344 }
7345 
7346 TEST(IsContainerTestTest, WorksForContainer) {
7347  EXPECT_EQ(sizeof(IsContainer),
7348  sizeof(IsContainerTest<std::vector<bool> >(0)));
7349  EXPECT_EQ(sizeof(IsContainer),
7350  sizeof(IsContainerTest<std::map<int, double> >(0)));
7351 }
7352 
7353 // Tests ArrayEq().
7354 
7355 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7356  EXPECT_TRUE(ArrayEq(5, 5L));
7357  EXPECT_FALSE(ArrayEq('a', 0));
7358 }
7359 
7360 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7361  // Note that a and b are distinct but compatible types.
7362  const int a[] = { 0, 1 };
7363  long b[] = { 0, 1 };
7364  EXPECT_TRUE(ArrayEq(a, b));
7365  EXPECT_TRUE(ArrayEq(a, 2, b));
7366 
7367  b[0] = 2;
7368  EXPECT_FALSE(ArrayEq(a, b));
7369  EXPECT_FALSE(ArrayEq(a, 1, b));
7370 }
7371 
7372 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7373  const char a[][3] = { "hi", "lo" };
7374  const char b[][3] = { "hi", "lo" };
7375  const char c[][3] = { "hi", "li" };
7376 
7377  EXPECT_TRUE(ArrayEq(a, b));
7378  EXPECT_TRUE(ArrayEq(a, 2, b));
7379 
7380  EXPECT_FALSE(ArrayEq(a, c));
7381  EXPECT_FALSE(ArrayEq(a, 2, c));
7382 }
7383 
7384 // Tests ArrayAwareFind().
7385 
7386 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7387  const char a[] = "hello";
7388  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7389  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7390 }
7391 
7392 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7393  int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7394  const int b[2] = { 2, 3 };
7395  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7396 
7397  const int c[2] = { 6, 7 };
7398  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7399 }
7400 
7401 // Tests CopyArray().
7402 
7403 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7404  int n = 0;
7405  CopyArray('a', &n);
7406  EXPECT_EQ('a', n);
7407 }
7408 
7409 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7410  const char a[3] = "hi";
7411  int b[3];
7412 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7413  CopyArray(a, &b);
7414  EXPECT_TRUE(ArrayEq(a, b));
7415 #endif
7416 
7417  int c[3];
7418  CopyArray(a, 3, c);
7419  EXPECT_TRUE(ArrayEq(a, c));
7420 }
7421 
7422 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7423  const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7424  int b[2][3];
7425 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7426  CopyArray(a, &b);
7427  EXPECT_TRUE(ArrayEq(a, b));
7428 #endif
7429 
7430  int c[2][3];
7431  CopyArray(a, 2, c);
7432  EXPECT_TRUE(ArrayEq(a, c));
7433 }
7434 
7435 // Tests NativeArray.
7436 
7437 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7438  const int a[3] = { 0, 1, 2 };
7440  EXPECT_EQ(3U, na.size());
7441  EXPECT_EQ(a, na.begin());
7442 }
7443 
7444 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7445  typedef int Array[2];
7446  Array* a = new Array[1];
7447  (*a)[0] = 0;
7448  (*a)[1] = 1;
7450  EXPECT_NE(*a, na.begin());
7451  delete[] a;
7452  EXPECT_EQ(0, na.begin()[0]);
7453  EXPECT_EQ(1, na.begin()[1]);
7454 
7455  // We rely on the heap checker to verify that na deletes the copy of
7456  // array.
7457 }
7458 
7459 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7460  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7461  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7462 
7463  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7464  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7465 }
7466 
7467 TEST(NativeArrayTest, MethodsWork) {
7468  const int a[3] = { 0, 1, 2 };
7470  ASSERT_EQ(3U, na.size());
7471  EXPECT_EQ(3, na.end() - na.begin());
7472 
7474  EXPECT_EQ(0, *it);
7475  ++it;
7476  EXPECT_EQ(1, *it);
7477  it++;
7478  EXPECT_EQ(2, *it);
7479  ++it;
7480  EXPECT_EQ(na.end(), it);
7481 
7482  EXPECT_TRUE(na == na);
7483 
7485  EXPECT_TRUE(na == na2);
7486 
7487  const int b1[3] = { 0, 1, 1 };
7488  const int b2[4] = { 0, 1, 2, 3 };
7491 }
7492 
7493 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7494  const char a[2][3] = { "hi", "lo" };
7496  ASSERT_EQ(2U, na.size());
7497  EXPECT_EQ(a, na.begin());
7498 }
7499 
7500 // Tests SkipPrefix().
7501 
7502 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7503  const char* const str = "hello";
7504 
7505  const char* p = str;
7506  EXPECT_TRUE(SkipPrefix("", &p));
7507  EXPECT_EQ(str, p);
7508 
7509  p = str;
7510  EXPECT_TRUE(SkipPrefix("hell", &p));
7511  EXPECT_EQ(str + 4, p);
7512 }
7513 
7514 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7515  const char* const str = "world";
7516 
7517  const char* p = str;
7518  EXPECT_FALSE(SkipPrefix("W", &p));
7519  EXPECT_EQ(str, p);
7520 
7521  p = str;
7522  EXPECT_FALSE(SkipPrefix("world!", &p));
7523  EXPECT_EQ(str, p);
7524 }
7525 
#define free(ptr)
Definition: curl_memory.h:130
GTEST_API_ bool g_help_flag
Definition: gtest.cc:187
void SetDefaultResultPrinter(TestEventListener *listener)
Definition: gtest.cc:3889
UNITTEST_START const char * values[]
Definition: unit1394.c:44
class UnitTestImpl * GetUnitTestImpl()
#define EXPECT_STRCASENE(s1, s2)
Definition: gtest.h:2094
GTEST_API_ Int32 Int32FromGTestEnv(const char *flag, Int32 default_val)
Definition: gtest-port.cc:1155
static const char * shared_resource_
static const std::vector< testing::TestPartResult > & test_part_results(const TestResult &test_result)
bool fatally_failed() const
#define EXPECT_PRED3(pred, v1, v2, v3)
int GetRandomSeedFromFlag(Int32 random_seed_flag)
static void SuppressEventForwarding(TestEventListeners *listeners)
#define EXPECT_DEATH_IF_SUPPORTED(statement, regex)
Environment * AddGlobalTestEnvironment(Environment *env)
Definition: gtest.h:1342
GTEST_API_ std::string GetCapturedStdout()
#define getenv
Definition: setup-vms.h:52
#define EXPECT_STRNE(s1, s2)
Definition: gtest.h:2090
#define false
#define EXPECT_PRED_FORMAT2(pred_format, v1, v2)
const char * summary() const
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(UnitTest *unit_test, int skip_count)
Definition: gtest.cc:4922
GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms)
Definition: gtest.cc:3526
#define ASSERT_LE(val1, val2)
Definition: gtest.h:2057
E GetElementOr(const std::vector< E > &v, int i, E default_value)
static Flags DeathTestUseFork(bool death_test_use_fork)
GTEST_API_ AssertionResult AssertionFailure()
Definition: gtest.cc:978
#define EXPECT_THROW(statement, expected_exception)
Definition: gtest.h:1936
#define EXPECT_NONFATAL_FAILURE(statement, substr)
Definition: gtest-spi.h:204
const TestInfo * GetTestInfo(int i) const
Definition: gtest.cc:2695
bool operator>(const TransformStorage &lhs, const TransformStorage &rhs)
GTEST_API_ std::vector< EditType > CalculateOptimalEdits(const std::vector< size_t > &left, const std::vector< size_t > &right)
Definition: gtest.cc:991
#define ASSERT_THROW(statement, expected_exception)
Definition: gtest.h:1942
static Flags StackTraceDepth(Int32 stack_trace_depth)
f
#define ASSERT_PRED3(pred, v1, v2, v3)
#define EXPECT_LE(val1, val2)
Definition: gtest.h:2021
#define GTEST_DISABLE_MSC_WARNINGS_POP_()
Definition: gtest-port.h:363
#define ASSERT_NE(val1, val2)
Definition: gtest.h:2053
class GTEST_API_ testing::internal::ScopedTrace GTEST_ATTRIBUTE_UNUSED_
static Flags Output(const char *output)
#define EXPECT_FLOAT_EQ(expected, actual)
Definition: gtest.h:2120
const char * message() const
int GetNextRandomSeed(int seed)
#define ASSERT_GE(val1, val2)
Definition: gtest.h:2065
static const TestResult * GetTestResult(const TestInfo *test_info)
#define ASSERT_PRED1(pred, v1)
static bool EndsWithCaseInsensitive(const std::string &str, const std::string &suffix)
Definition: gtest.cc:1912
GTEST_API_ bool ShouldUseColor(bool stdout_is_tty)
Definition: gtest.cc:2872
const char * output
TestEventListener * Release(TestEventListener *listener)
Definition: gtest.cc:3872
::std::string string
Definition: gtest-port.h:1129
GTEST_API_ bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id)
Definition: gtest.cc:4731
const char * key() const
Definition: gtest.h:497
#define strdup(ptr)
Definition: curl_memory.h:122
virtual void OnTestProgramStart(const UnitTest &)
XmlRpcServer s
TestEventListener * repeater()
Definition: gtest.cc:3882
static bool HasFailure()
Definition: gtest.h:407
virtual void OnTestIterationStart(const UnitTest &unit_test, int iteration)=0
#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help)
#define EXPECT_GE(val1, val2)
Definition: gtest.h:2025
::std::wstring wstring
Definition: gtest-port.h:1135
bool operator==(T *ptr, const linked_ptr< T > &x)
static Flags BreakOnFailure(bool break_on_failure)
#define ADD_FAILURE_AT(file, line)
Definition: gtest.h:1905
#define GTEST_IS_NULL_LITERAL_(x)
#define ASSERT_EQ(val1, val2)
Definition: gtest.h:2049
int IntAlias
static TestEventListener * GetRepeater(TestEventListeners *listeners)
const_iterator begin() const
TestEventListener * default_xml_generator() const
Definition: gtest.h:1087
GTEST_TEST(AlternativeNameTest, Works)
GTEST_API_ bool SkipPrefix(const char *prefix, const char **pstr)
Definition: gtest.cc:4950
GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms)
Definition: gtest.cc:3502
static const TestInfo * GetTestInfo(const char *test_name)
const char * stream_result_to
static Flags AlsoRunDisabledTests(bool also_run_disabled_tests)
#define GTEST_USE_UNPROTECTED_COMMA_
const TestProperty & GetTestProperty(int i) const
Definition: gtest.cc:2001
static Flags StreamResultTo(const char *stream_result_to)
GtkWidget * Bar
Definition: curlgtk.c:20
void Append(TestEventListener *listener)
Definition: gtest.cc:3865
static void ClearTestPartResults(TestResult *test_result)
GTEST_API_ bool ShouldShard(const char *total_shards_str, const char *shard_index_str, bool in_subprocess_for_death_test)
Definition: gtest.cc:4668
GTEST_API_ std::string CodePointToUtf8(UInt32 code_point)
Definition: gtest.cc:1722
static void FailFatally()
#define ASSERT_STRCASEEQ(expected, actual)
Definition: gtest.h:2101
GTEST_API_ void CaptureStdout()
#define EXPECT_ANY_THROW(statement)
Definition: gtest.h:1940
TypeWithSize< 8 >::Int TimeInMillis
Definition: gtest-port.h:2440
TFSIMD_FORCE_INLINE const tfScalar & y() const
std::ostream & operator<<(std::ostream &os, const Message &sb)
#define EXPECT_LT(val1, val2)
Definition: gtest.h:2023
#define EXPECT_DOUBLE_EQ(expected, actual)
Definition: gtest.h:2124
int total_test_count() const
Definition: gtest.cc:2663
static void CheckFlags(const Flags &expected)
UNITTEST_START int result
Definition: unit1304.c:49
#define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr)
Definition: gtest-spi.h:155
const char ** p
Definition: unit1394.c:76
#define EXPECT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5)
#define EXPECT_FATAL_FAILURE(statement, substr)
Definition: gtest-spi.h:138
REGISTER_TYPED_TEST_CASE_P(TypeParamTest, TestA, TestB)
#define ASSERT_STREQ(expected, actual)
Definition: gtest.h:2097
unsigned int i
Definition: unit1303.c:79
std::string StreamableToString(const T &streamable)
virtual void SetUp()
Definition: gtest.cc:2189
static void TestParsingFlags(int argc1, const CharType **argv1, int argc2, const CharType **argv2, const Flags &expected, bool should_print_help)
#define EXPECT_NO_FATAL_FAILURE(statement)
Definition: gtest.h:2194
static void SetDefaultXmlGenerator(TestEventListeners *listeners, TestEventListener *listener)
internal::TimeInMillis TimeInMillis
Definition: gtest.h:481
static bool EventForwardingEnabled(const TestEventListeners &listeners)
void TestGTestReferenceToConst()
bool ArrayEq(const T *lhs, size_t size, const U *rhs)
TypeWithSize< 4 >::UInt UInt32
Definition: gtest-port.h:2437
#define EXPECT_PRED1(pred, v1)
TYPED_TEST(TypedTest, TestA)
#define EXPECT_GT(val1, val2)
Definition: gtest.h:2027
TEST_F(ListenerTest, DoesFoo)
TypeWithSize< 4 >::Int Int32
Definition: gtest-port.h:2436
#define GTEST_ASSERT_EQ(expected, actual)
Definition: gtest.h:2030
TYPED_TEST_CASE(TypedTest, MyTypes)
#define ASSERT_PRED_FORMAT1(pred_format, v1)
Base(int an_x)
GTEST_API_ TypeId GetTestTypeId()
Definition: gtest.cc:604
UNITTEST_START char * output
Definition: unit1302.c:50
#define GTEST_FAIL()
Definition: gtest.h:1910
#define ASSERT_NO_THROW(statement)
Definition: gtest.h:1944
const char * name() const
Definition: gtest.h:655
#define EXPECT_NEAR(val1, val2, abs_error)
Definition: gtest.h:2136
#define GTEST_FLAG_PREFIX_UPPER_
Definition: gtest-port.h:283
virtual void OnTestIterationEnd(const UnitTest &unit_test, int iteration)=0
#define GTEST_COMPILE_ASSERT_(expr, msg)
Definition: gtest-port.h:1064
virtual void OnTestProgramEnd(const UnitTest &unit_test)=0
const char * str
Definition: unit1398.c:33
bool GTEST_FLAG(internal_skip_environment_and_ad_hoc_tests)
const char * filter
#define ASSERT_TRUE(condition)
Definition: gtest.h:1958
const char * message() const
Definition: gtest.h:297
GTEST_API_ AssertionResult AssertionSuccess()
Definition: gtest.cc:973
TestListener(int *on_start_counter, bool *is_destroyed)
#define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings)
Definition: gtest-port.h:362
static bool CaseInsensitiveWideCStringEquals(const wchar_t *lhs, const wchar_t *rhs)
Definition: gtest.cc:1888
virtual void OnTestProgramStart(const UnitTest &)
#define GTEST_ASSERT_LT(val1, val2)
Definition: gtest.h:2038
#define ASSERT(expr)
Definition: unit_test.c:19
#define GTEST_CHECK_(condition)
Definition: gtest-port.h:1322
Definition: mongoose.c:1394
void Reseed(UInt32 seed)
#define EXPECT_NE(expected, actual)
Definition: gtest.h:2019
void SetDefaultXmlGenerator(TestEventListener *listener)
Definition: gtest.cc:3905
const int kMaxStackTraceDepth
Definition: gtest.h:147
UInt32 Generate(UInt32 range)
Definition: gtest.cc:297
#define ASSERT_NO_FATAL_FAILURE(statement)
Definition: gtest.h:2192
#define printf
Definition: curl_printf.h:40
TYPED_TEST_CASE_P(TypeParamTest)
#define GTEST_ASSERT_GT(val1, val2)
Definition: gtest.h:2042
GTEST_API_ const TypeId kTestTypeIdInGoogleTest
Definition: gtest.cc:610
Definition: unit1323.c:36
static void RecordProperty(TestResult *test_result, const std::string &xml_element, const TestProperty &property)
GTEST_API_ bool AlwaysTrue()
Definition: gtest.cc:4937
virtual void TearDown()
Definition: gtest.cc:2195
const char * file_name() const
void TestGTestRemoveConst()
#define ASSERT_DOUBLE_EQ(expected, actual)
Definition: gtest.h:2132
void TestEq1(int x)
std::vector< std::string > * vector_
#define EXPECT_STREQ(expected, actual)
Definition: gtest.h:2088
void UnitTestRecordProperty(const char *key, const std::string &value)
#define GTEST_ASSERT_NE(val1, val2)
Definition: gtest.h:2034
TFSIMD_FORCE_INLINE const tfScalar & x() const
static void SetDefaultResultPrinter(TestEventListeners *listeners, TestEventListener *listener)
static bool HasNonfatalFailureHelper()
#define EXPECT_STRCASEEQ(expected, actual)
Definition: gtest.h:2092
std::string GetString() const
Definition: gtest.cc:944
void TestGTestRemoveReference()
GTEST_API_ AssertionResult IsSubstring(const char *needle_expr, const char *haystack_expr, const char *needle, const char *haystack)
Definition: gtest.cc:1569
GTEST_API_ TimeInMillis GetTimeInMillis()
Definition: gtest.cc:786
const char * test_case_name() const
Definition: gtest.h:652
NamedEnum
const TestPartResult & GetTestPartResult(int index) const
const TestInfo * current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_)
Definition: gtest.cc:4242
static void AssertStringArrayEq(size_t size1, CharType **array1, size_t size2, CharType **array2)
GTEST_API_ std::string WideStringToUtf8(const wchar_t *str, int num_chars)
Definition: gtest.cc:1786
bool EventForwardingEnabled() const
Definition: gtest.cc:3918
static Flags Shuffle(bool shuffle)
const TestResult & ad_hoc_test_result() const
Definition: gtest.h:841
#define EXPECT_EQ(expected, actual)
Definition: gtest.h:2015
int test_property_count() const
Definition: gtest.cc:2168
void ShuffleRange(internal::Random *random, int begin, int end, std::vector< E > *v)
#define true
GTEST_API_ std::string AppendUserMessage(const std::string &gtest_msg, const Message &user_msg)
Definition: gtest.cc:1964
virtual void OnTestIterationStart(const UnitTest &, int)
TYPED_TEST_P(TypeParamTest, TestA)
#define ASSERT_NEAR(val1, val2, abs_error)
Definition: gtest.h:2140
#define EXPECT_PRED_FORMAT1(pred_format, v1)
int CountIf(const Container &c, Predicate predicate)
virtual ~TestListener()
static Flags ThrowOnFailure(bool throw_on_failure)
virtual void OnTestProgramEnd(const UnitTest &)
static Flags Filter(const char *filter)
GTEST_API_ AssertionResult EqFailure(const char *expected_expression, const char *actual_expression, const std::string &expected_value, const std::string &actual_value, bool ignoring_case)
Definition: gtest.cc:1275
#define ASSERT_FLOAT_EQ(expected, actual)
Definition: gtest.h:2128
#define ASSERT_GT(val1, val2)
Definition: gtest.h:2069
GTEST_API_ void ParseGoogleTestFlagsOnly(int *argc, char **argv)
Definition: gtest.cc:5246
INSTANTIATE_TYPED_TEST_CASE_P(My, TypeParamTest, MyTypes)
void Shuffle(internal::Random *random, std::vector< E > *v)
#define ASSERT_STRNE(s1, s2)
Definition: gtest.h:2099
GTEST_API_ std::string CreateUnifiedDiff(const std::vector< std::string > &left, const std::vector< std::string > &right, size_t context=2)
Definition: gtest.cc:1166
virtual void OnTestIterationEnd(const UnitTest &, int)
#define ASSERT_PRED_FORMAT4(pred_format, v1, v2, v3, v4)
std::string GetEventDescription(const char *method)
const_iterator end() const
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition: gtest-port.h:906
bool StaticAssertTypeEq()
Definition: gtest.h:2243
void TestGTestAddReference()
virtual void OnTestProgramStart(const UnitTest &unit_test)=0
GTEST_API_ AssertionResult DoubleLE(const char *expr1, const char *expr2, double val1, double val2)
Definition: gtest.cc:1391
#define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr)
Definition: gtest-spi.h:218
UNITTEST_START int * value
Definition: unit1602.c:51
#define ASSERT_STRCASENE(s1, s2)
Definition: gtest.h:2103
#define GTEST_ASSERT_GE(val1, val2)
Definition: gtest.h:2040
#define FRIEND_TEST(test_case_name, test_name)
Definition: gtest_prod.h:55
const TestResult * result() const
Definition: gtest.h:700
static bool HasFailureHelper()
#define EXPECT_TRUE(condition)
Definition: gtest.h:1952
void CopyArray(const T *from, size_t size, U *to)
#define ASSERT_LT(val1, val2)
Definition: gtest.h:2061
GTEST_API_ AssertionResult IsNotSubstring(const char *needle_expr, const char *haystack_expr, const char *needle, const char *haystack)
Definition: gtest.cc:1581
static UnitTest * GetInstance()
Definition: gtest.cc:3935
TestEventListener * default_result_printer() const
Definition: gtest.h:1076
#define ADD_FAILURE()
Definition: gtest.h:1901
TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded)
Iter ArrayAwareFind(Iter begin, Iter end, const Element &elem)
#define ASSERT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5)
static Flags CatchExceptions(bool catch_exceptions)
#define GTEST_ASSERT_LE(val1, val2)
Definition: gtest.h:2036
bool operator!=(T *ptr, const linked_ptr< T > &x)
#define EXPECT_NO_THROW(statement)
Definition: gtest.h:1938
#define GTEST_SUCCEED()
Definition: gtest.h:1919
void ForEach(const Container &c, Functor functor)
bool nonfatally_failed() const
static void RecordProperty(const std::string &key, const std::string &value)
Definition: gtest.cc:2199
static Flags Repeat(Int32 repeat)
const char * value() const
Definition: gtest.h:502
#define FAIL()
Definition: gtest.h:1915
#define EXPECT_FALSE(condition)
Definition: gtest.h:1955
#define SUCCEED()
Definition: gtest.h:1924
GTEST_API_ Int32 Int32FromEnvOrDie(const char *env_var, Int32 default_val)
Definition: gtest.cc:4713
const BiggestInt kMaxBiggestInt
Definition: gtest-port.h:2381
SequenceTestingListener(std::vector< std::string > *vector, const char *id)
static Flags ListTests(bool list_tests)
const char * name
Definition: curl_sasl.c:54
#define ASSERT_PRED2(pred, v1, v2)
static std::string ShowWideCString(const wchar_t *wide_c_str)
Definition: gtest.cc:1811
IMETHOD void random(Vector &a)
#define ASSERT_FALSE(condition)
Definition: gtest.h:1961
IsContainer IsContainerTest(int, typename C::iterator *=NULL, typename C::const_iterator *=NULL)
static Flags RandomSeed(Int32 random_seed)
#define EXPECT_PRED2(pred, v1, v2)
const TestCase * current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_)
Definition: gtest.cc:4234
static const UInt32 kMaxRange
#define ASSERT_ANY_THROW(statement)
Definition: gtest.h:1946
static bool HasNonfatalFailure()
Definition: gtest.cc:2454
int key
Definition: unit1602.c:56
#define GTEST_FLAG_PREFIX_
Definition: gtest-port.h:281
void TestGTestRemoveReferenceAndConst()
#define EXPECT_PRED_FORMAT4(pred_format, v1, v2, v3, v4)
GTEST_API_ bool ParseInt32Flag(const char *str, const char *flag, Int32 *value)
Definition: gtest.cc:5019
TEST(IsXDigitTest, WorksForNarrowAscii)
int x() const
static Flags PrintTime(bool print_time)
GTEST_API_ AssertionResult FloatLE(const char *expr1, const char *expr2, float val1, float val2)
Definition: gtest.cc:1384
#define ASSERT_PRED_FORMAT2(pred_format, v1, v2)


rc_tagdetect_client
Author(s): Monika Florek-Jasinska , Raphael Schaller
autogenerated on Sat Feb 13 2021 03:42:15