gtest-printers_test.cc
Go to the documentation of this file.
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Test - The Google C++ Testing Framework
33 //
34 // This file tests the universal value printer.
35 
36 #include "gtest/gtest-printers.h"
37 
38 #include <ctype.h>
39 #include <limits.h>
40 #include <string.h>
41 #include <algorithm>
42 #include <deque>
43 #include <list>
44 #include <map>
45 #include <set>
46 #include <sstream>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 #include "gtest/gtest.h"
52 
53 // hash_map and hash_set are available under Visual C++.
54 #if _MSC_VER
55 # define GTEST_HAS_HASH_MAP_ 1 // Indicates that hash_map is available.
56 # include <hash_map> // NOLINT
57 # define GTEST_HAS_HASH_SET_ 1 // Indicates that hash_set is available.
58 # include <hash_set> // NOLINT
59 #endif // GTEST_OS_WINDOWS
60 
61 // Some user-defined types for testing the universal value printer.
62 
63 // An anonymous enum type.
65  kAE1 = -1,
66  kAE2 = 1
67 };
68 
69 // An enum without a user-defined printer.
71  kEWP1 = -2,
72  kEWP2 = 42
73 };
74 
75 // An enum with a << operator.
77  kEWS1 = 10
78 };
79 
80 std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
81  return os << (e == kEWS1 ? "kEWS1" : "invalid");
82 }
83 
84 // An enum with a PrintTo() function.
86  kEWPT1 = 1
87 };
88 
89 void PrintTo(EnumWithPrintTo e, std::ostream* os) {
90  *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
91 }
92 
93 // A class implicitly convertible to BiggestInt.
95  public:
97 };
98 
99 // A user-defined unprintable class template in the global namespace.
100 template <typename T>
102  public:
104  private:
106 };
107 
108 // A user-defined streamable type in the global namespace.
110  public:
111  virtual ~StreamableInGlobal() {}
112 };
113 
114 inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
115  os << "StreamableInGlobal";
116 }
117 
118 void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
119  os << "StreamableInGlobal*";
120 }
121 
122 namespace foo {
123 
124 // A user-defined unprintable type in a user namespace.
126  public:
127  UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
128  double z() const { return z_; }
129  private:
130  char xy_[8];
131  double z_;
132 };
133 
134 // A user-defined printable type in a user-chosen namespace.
137  int value;
138 };
139 
140 void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
141  *os << "PrintableViaPrintTo: " << x.value;
142 }
143 
144 // A type with a user-defined << for printing its pointer.
146 };
147 
148 ::std::ostream& operator<<(::std::ostream& os,
149  const PointerPrintable* /* x */) {
150  return os << "PointerPrintable*";
151 }
152 
153 // A user-defined printable class template in a user-chosen namespace.
154 template <typename T>
156  public:
157  explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
158 
159  const T& value() const { return value_; }
160  private:
162 };
163 
164 template <typename T>
165 void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
166  *os << "PrintableViaPrintToTemplate: " << x.value();
167 }
168 
169 // A user-defined streamable class template in a user namespace.
170 template <typename T>
172  public:
173  StreamableTemplateInFoo() : value_() {}
174 
175  const T& value() const { return value_; }
176  private:
178 };
179 
180 template <typename T>
181 inline ::std::ostream& operator<<(::std::ostream& os,
182  const StreamableTemplateInFoo<T>& x) {
183  return os << "StreamableTemplateInFoo: " << x.value();
184 }
185 
186 } // namespace foo
187 
188 namespace testing {
189 namespace gtest_printers_test {
190 
191 using ::std::deque;
192 using ::std::list;
193 using ::std::make_pair;
194 using ::std::map;
195 using ::std::multimap;
196 using ::std::multiset;
197 using ::std::pair;
198 using ::std::set;
199 using ::std::vector;
203 using ::testing::internal::NativeArray;
204 using ::testing::internal::RE;
205 using ::testing::internal::RelationToSourceReference;
208 using ::testing::internal::UniversalPrinter;
210 using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
212 
213 // The hash_* classes are not part of the C++ standard. STLport
214 // defines them in namespace std. MSVC defines them in ::stdext. GCC
215 // defines them in ::.
216 #ifdef _STLP_HASH_MAP // We got <hash_map> from STLport.
217 using ::std::hash_map;
218 using ::std::hash_set;
219 using ::std::hash_multimap;
220 using ::std::hash_multiset;
221 #elif _MSC_VER
222 using ::stdext::hash_map;
223 using ::stdext::hash_set;
224 using ::stdext::hash_multimap;
225 using ::stdext::hash_multiset;
226 #endif
227 
228 // Prints a value to a string using the universal value printer. This
229 // is a helper for testing UniversalPrinter<T>::Print() for various types.
230 template <typename T>
231 string Print(const T& value) {
232  ::std::stringstream ss;
233  UniversalPrinter<T>::Print(value, &ss);
234  return ss.str();
235 }
236 
237 // Prints a value passed by reference to a string, using the universal
238 // value printer. This is a helper for testing
239 // UniversalPrinter<T&>::Print() for various types.
240 template <typename T>
241 string PrintByRef(const T& value) {
242  ::std::stringstream ss;
243  UniversalPrinter<T&>::Print(value, &ss);
244  return ss.str();
245 }
246 
247 // Tests printing various enum types.
248 
249 TEST(PrintEnumTest, AnonymousEnum) {
250  EXPECT_EQ("-1", Print(kAE1));
251  EXPECT_EQ("1", Print(kAE2));
252 }
253 
254 TEST(PrintEnumTest, EnumWithoutPrinter) {
255  EXPECT_EQ("-2", Print(kEWP1));
256  EXPECT_EQ("42", Print(kEWP2));
257 }
258 
259 TEST(PrintEnumTest, EnumWithStreaming) {
260  EXPECT_EQ("kEWS1", Print(kEWS1));
261  EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
262 }
263 
264 TEST(PrintEnumTest, EnumWithPrintTo) {
265  EXPECT_EQ("kEWPT1", Print(kEWPT1));
266  EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
267 }
268 
269 // Tests printing a class implicitly convertible to BiggestInt.
270 
271 TEST(PrintClassTest, BiggestIntConvertible) {
273 }
274 
275 // Tests printing various char types.
276 
277 // char.
278 TEST(PrintCharTest, PlainChar) {
279  EXPECT_EQ("'\\0'", Print('\0'));
280  EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
281  EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
282  EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
283  EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
284  EXPECT_EQ("'\\a' (7)", Print('\a'));
285  EXPECT_EQ("'\\b' (8)", Print('\b'));
286  EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
287  EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
288  EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
289  EXPECT_EQ("'\\t' (9)", Print('\t'));
290  EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
291  EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
292  EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
293  EXPECT_EQ("' ' (32, 0x20)", Print(' '));
294  EXPECT_EQ("'a' (97, 0x61)", Print('a'));
295 }
296 
297 // signed char.
298 TEST(PrintCharTest, SignedChar) {
299  EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
300  EXPECT_EQ("'\\xCE' (-50)",
301  Print(static_cast<signed char>(-50)));
302 }
303 
304 // unsigned char.
305 TEST(PrintCharTest, UnsignedChar) {
306  EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
307  EXPECT_EQ("'b' (98, 0x62)",
308  Print(static_cast<unsigned char>('b')));
309 }
310 
311 // Tests printing other simple, built-in types.
312 
313 // bool.
314 TEST(PrintBuiltInTypeTest, Bool) {
315  EXPECT_EQ("false", Print(false));
316  EXPECT_EQ("true", Print(true));
317 }
318 
319 // wchar_t.
320 TEST(PrintBuiltInTypeTest, Wchar_t) {
321  EXPECT_EQ("L'\\0'", Print(L'\0'));
322  EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
323  EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
324  EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
325  EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
326  EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
327  EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
328  EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
329  EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
330  EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
331  EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
332  EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
333  EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
334  EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
335  EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
336  EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
337  EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
338  EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
339 }
340 
341 // Test that Int64 provides more storage than wchar_t.
342 TEST(PrintTypeSizeTest, Wchar_t) {
343  EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
344 }
345 
346 // Various integer types.
347 TEST(PrintBuiltInTypeTest, Integer) {
348  EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
349  EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
350  EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16
351  EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16
352  EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32
353  EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32
354  EXPECT_EQ("18446744073709551615",
355  Print(static_cast<testing::internal::UInt64>(-1))); // uint64
356  EXPECT_EQ("-9223372036854775808",
357  Print(static_cast<testing::internal::Int64>(1) << 63)); // int64
358 }
359 
360 // Size types.
361 TEST(PrintBuiltInTypeTest, Size_t) {
362  EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
363 #if !GTEST_OS_WINDOWS
364  // Windows has no ssize_t type.
365  EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
366 #endif // !GTEST_OS_WINDOWS
367 }
368 
369 // Floating-points.
370 TEST(PrintBuiltInTypeTest, FloatingPoints) {
371  EXPECT_EQ("1.5", Print(1.5f)); // float
372  EXPECT_EQ("-2.5", Print(-2.5)); // double
373 }
374 
375 // Since ::std::stringstream::operator<<(const void *) formats the pointer
376 // output differently with different compilers, we have to create the expected
377 // output first and use it as our expectation.
378 static string PrintPointer(const void *p) {
379  ::std::stringstream expected_result_stream;
380  expected_result_stream << p;
381  return expected_result_stream.str();
382 }
383 
384 // Tests printing C strings.
385 
386 // const char*.
387 TEST(PrintCStringTest, Const) {
388  const char* p = "World";
389  EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
390 }
391 
392 // char*.
393 TEST(PrintCStringTest, NonConst) {
394  char p[] = "Hi";
395  EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
396  Print(static_cast<char*>(p)));
397 }
398 
399 // NULL C string.
400 TEST(PrintCStringTest, Null) {
401  const char* p = NULL;
402  EXPECT_EQ("NULL", Print(p));
403 }
404 
405 // Tests that C strings are escaped properly.
406 TEST(PrintCStringTest, EscapesProperly) {
407  const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
408  EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
409  "\\n\\r\\t\\v\\x7F\\xFF a\"",
410  Print(p));
411 }
412 
413 // MSVC compiler can be configured to define whar_t as a typedef
414 // of unsigned short. Defining an overload for const wchar_t* in that case
415 // would cause pointers to unsigned shorts be printed as wide strings,
416 // possibly accessing more memory than intended and causing invalid
417 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
418 // wchar_t is implemented as a native type.
419 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
420 
421 // const wchar_t*.
422 TEST(PrintWideCStringTest, Const) {
423  const wchar_t* p = L"World";
424  EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
425 }
426 
427 // wchar_t*.
428 TEST(PrintWideCStringTest, NonConst) {
429  wchar_t p[] = L"Hi";
430  EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
431  Print(static_cast<wchar_t*>(p)));
432 }
433 
434 // NULL wide C string.
435 TEST(PrintWideCStringTest, Null) {
436  const wchar_t* p = NULL;
437  EXPECT_EQ("NULL", Print(p));
438 }
439 
440 // Tests that wide C strings are escaped properly.
441 TEST(PrintWideCStringTest, EscapesProperly) {
442  const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
443  '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
444  EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
445  "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
446  Print(static_cast<const wchar_t*>(s)));
447 }
448 #endif // native wchar_t
449 
450 // Tests printing pointers to other char types.
451 
452 // signed char*.
453 TEST(PrintCharPointerTest, SignedChar) {
454  signed char* p = reinterpret_cast<signed char*>(0x1234);
455  EXPECT_EQ(PrintPointer(p), Print(p));
456  p = NULL;
457  EXPECT_EQ("NULL", Print(p));
458 }
459 
460 // const signed char*.
461 TEST(PrintCharPointerTest, ConstSignedChar) {
462  signed char* p = reinterpret_cast<signed char*>(0x1234);
463  EXPECT_EQ(PrintPointer(p), Print(p));
464  p = NULL;
465  EXPECT_EQ("NULL", Print(p));
466 }
467 
468 // unsigned char*.
469 TEST(PrintCharPointerTest, UnsignedChar) {
470  unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
471  EXPECT_EQ(PrintPointer(p), Print(p));
472  p = NULL;
473  EXPECT_EQ("NULL", Print(p));
474 }
475 
476 // const unsigned char*.
477 TEST(PrintCharPointerTest, ConstUnsignedChar) {
478  const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
479  EXPECT_EQ(PrintPointer(p), Print(p));
480  p = NULL;
481  EXPECT_EQ("NULL", Print(p));
482 }
483 
484 // Tests printing pointers to simple, built-in types.
485 
486 // bool*.
487 TEST(PrintPointerToBuiltInTypeTest, Bool) {
488  bool* p = reinterpret_cast<bool*>(0xABCD);
489  EXPECT_EQ(PrintPointer(p), Print(p));
490  p = NULL;
491  EXPECT_EQ("NULL", Print(p));
492 }
493 
494 // void*.
495 TEST(PrintPointerToBuiltInTypeTest, Void) {
496  void* p = reinterpret_cast<void*>(0xABCD);
497  EXPECT_EQ(PrintPointer(p), Print(p));
498  p = NULL;
499  EXPECT_EQ("NULL", Print(p));
500 }
501 
502 // const void*.
503 TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
504  const void* p = reinterpret_cast<const void*>(0xABCD);
505  EXPECT_EQ(PrintPointer(p), Print(p));
506  p = NULL;
507  EXPECT_EQ("NULL", Print(p));
508 }
509 
510 // Tests printing pointers to pointers.
511 TEST(PrintPointerToPointerTest, IntPointerPointer) {
512  int** p = reinterpret_cast<int**>(0xABCD);
513  EXPECT_EQ(PrintPointer(p), Print(p));
514  p = NULL;
515  EXPECT_EQ("NULL", Print(p));
516 }
517 
518 // Tests printing (non-member) function pointers.
519 
520 void MyFunction(int /* n */) {}
521 
522 TEST(PrintPointerTest, NonMemberFunctionPointer) {
523  // We cannot directly cast &MyFunction to const void* because the
524  // standard disallows casting between pointers to functions and
525  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
526  // this limitation.
527  EXPECT_EQ(
528  PrintPointer(reinterpret_cast<const void*>(
529  reinterpret_cast<internal::BiggestInt>(&MyFunction))),
530  Print(&MyFunction));
531  int (*p)(bool) = NULL; // NOLINT
532  EXPECT_EQ("NULL", Print(p));
533 }
534 
535 // An assertion predicate determining whether a one string is a prefix for
536 // another.
537 template <typename StringType>
538 AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
539  if (str.find(prefix, 0) == 0)
540  return AssertionSuccess();
541 
542  const bool is_wide_string = sizeof(prefix[0]) > 1;
543  const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
544  return AssertionFailure()
545  << begin_string_quote << prefix << "\" is not a prefix of "
546  << begin_string_quote << str << "\"\n";
547 }
548 
549 // Tests printing member variable pointers. Although they are called
550 // pointers, they don't point to a location in the address space.
551 // Their representation is implementation-defined. Thus they will be
552 // printed as raw bytes.
553 
554 struct Foo {
555  public:
556  virtual ~Foo() {}
557  int MyMethod(char x) { return x + 1; }
558  virtual char MyVirtualMethod(int /* n */) { return 'a'; }
559 
560  int value;
561 };
562 
563 TEST(PrintPointerTest, MemberVariablePointer) {
565  Print(sizeof(&Foo::value)) + "-byte object "));
566  int (Foo::*p) = NULL; // NOLINT
568  Print(sizeof(p)) + "-byte object "));
569 }
570 
571 // Tests printing member function pointers. Although they are called
572 // pointers, they don't point to a location in the address space.
573 // Their representation is implementation-defined. Thus they will be
574 // printed as raw bytes.
575 TEST(PrintPointerTest, MemberFunctionPointer) {
576  EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
577  Print(sizeof(&Foo::MyMethod)) + "-byte object "));
578  EXPECT_TRUE(
579  HasPrefix(Print(&Foo::MyVirtualMethod),
580  Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
581  int (Foo::*p)(char) = NULL; // NOLINT
583  Print(sizeof(p)) + "-byte object "));
584 }
585 
586 // Tests printing C arrays.
587 
588 // The difference between this and Print() is that it ensures that the
589 // argument is a reference to an array.
590 template <typename T, size_t N>
591 string PrintArrayHelper(T (&a)[N]) {
592  return Print(a);
593 }
594 
595 // One-dimensional array.
596 TEST(PrintArrayTest, OneDimensionalArray) {
597  int a[5] = { 1, 2, 3, 4, 5 };
598  EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
599 }
600 
601 // Two-dimensional array.
602 TEST(PrintArrayTest, TwoDimensionalArray) {
603  int a[2][5] = {
604  { 1, 2, 3, 4, 5 },
605  { 6, 7, 8, 9, 0 }
606  };
607  EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
608 }
609 
610 // Array of const elements.
611 TEST(PrintArrayTest, ConstArray) {
612  const bool a[1] = { false };
613  EXPECT_EQ("{ false }", PrintArrayHelper(a));
614 }
615 
616 // char array without terminating NUL.
617 TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
618  // Array a contains '\0' in the middle and doesn't end with '\0'.
619  char a[] = { 'H', '\0', 'i' };
620  EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
621 }
622 
623 // const char array with terminating NUL.
624 TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
625  const char a[] = "\0Hi";
626  EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
627 }
628 
629 // const wchar_t array without terminating NUL.
630 TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
631  // Array a contains '\0' in the middle and doesn't end with '\0'.
632  const wchar_t a[] = { L'H', L'\0', L'i' };
633  EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
634 }
635 
636 // wchar_t array with terminating NUL.
637 TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
638  const wchar_t a[] = L"\0Hi";
639  EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
640 }
641 
642 // Array of objects.
643 TEST(PrintArrayTest, ObjectArray) {
644  string a[3] = { "Hi", "Hello", "Ni hao" };
645  EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
646 }
647 
648 // Array with many elements.
649 TEST(PrintArrayTest, BigArray) {
650  int a[100] = { 1, 2, 3 };
651  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
652  PrintArrayHelper(a));
653 }
654 
655 // Tests printing ::string and ::std::string.
656 
657 #if GTEST_HAS_GLOBAL_STRING
658 // ::string.
659 TEST(PrintStringTest, StringInGlobalNamespace) {
660  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
661  const ::string str(s, sizeof(s));
662  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
663  Print(str));
664 }
665 #endif // GTEST_HAS_GLOBAL_STRING
666 
667 // ::std::string.
668 TEST(PrintStringTest, StringInStdNamespace) {
669  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
670  const ::std::string str(s, sizeof(s));
671  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
672  Print(str));
673 }
674 
675 TEST(PrintStringTest, StringAmbiguousHex) {
676  // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
677  // '\x6', '\x6B', or '\x6BA'.
678 
679  // a hex escaping sequence following by a decimal digit
680  EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
681  // a hex escaping sequence following by a hex digit (lower-case)
682  EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
683  // a hex escaping sequence following by a hex digit (upper-case)
684  EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
685  // a hex escaping sequence following by a non-xdigit
686  EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
687 }
688 
689 // Tests printing ::wstring and ::std::wstring.
690 
691 #if GTEST_HAS_GLOBAL_WSTRING
692 // ::wstring.
693 TEST(PrintWideStringTest, StringInGlobalNamespace) {
694  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
695  const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
696  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
697  "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
698  Print(str));
699 }
700 #endif // GTEST_HAS_GLOBAL_WSTRING
701 
702 #if GTEST_HAS_STD_WSTRING
703 // ::std::wstring.
704 TEST(PrintWideStringTest, StringInStdNamespace) {
705  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
706  const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
707  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
708  "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
709  Print(str));
710 }
711 
712 TEST(PrintWideStringTest, StringAmbiguousHex) {
713  // same for wide strings.
714  EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
715  EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
716  Print(::std::wstring(L"mm\x6" L"bananas")));
717  EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
718  Print(::std::wstring(L"NOM\x6" L"BANANA")));
719  EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
720 }
721 #endif // GTEST_HAS_STD_WSTRING
722 
723 // Tests printing types that support generic streaming (i.e. streaming
724 // to std::basic_ostream<Char, CharTraits> for any valid Char and
725 // CharTraits types).
726 
727 // Tests printing a non-template type that supports generic streaming.
728 
730 
731 template <typename Char, typename CharTraits>
732 std::basic_ostream<Char, CharTraits>& operator<<(
733  std::basic_ostream<Char, CharTraits>& os,
734  const AllowsGenericStreaming& /* a */) {
735  return os << "AllowsGenericStreaming";
736 }
737 
738 TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
740  EXPECT_EQ("AllowsGenericStreaming", Print(a));
741 }
742 
743 // Tests printing a template type that supports generic streaming.
744 
745 template <typename T>
747 
748 template <typename Char, typename CharTraits, typename T>
749 std::basic_ostream<Char, CharTraits>& operator<<(
750  std::basic_ostream<Char, CharTraits>& os,
751  const AllowsGenericStreamingTemplate<T>& /* a */) {
752  return os << "AllowsGenericStreamingTemplate";
753 }
754 
755 TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
757  EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
758 }
759 
760 // Tests printing a type that supports generic streaming and can be
761 // implicitly converted to another printable type.
762 
763 template <typename T>
765  public:
766  operator bool() const { return false; }
767 };
768 
769 template <typename Char, typename CharTraits, typename T>
770 std::basic_ostream<Char, CharTraits>& operator<<(
771  std::basic_ostream<Char, CharTraits>& os,
773  return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
774 }
775 
776 TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
778  EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
779 }
780 
781 #if GTEST_HAS_STRING_PIECE_
782 
783 // Tests printing StringPiece.
784 
785 TEST(PrintStringPieceTest, SimpleStringPiece) {
786  const StringPiece sp = "Hello";
787  EXPECT_EQ("\"Hello\"", Print(sp));
788 }
789 
790 TEST(PrintStringPieceTest, UnprintableCharacters) {
791  const char str[] = "NUL (\0) and \r\t";
792  const StringPiece sp(str, sizeof(str) - 1);
793  EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
794 }
795 
796 #endif // GTEST_HAS_STRING_PIECE_
797 
798 // Tests printing STL containers.
799 
800 TEST(PrintStlContainerTest, EmptyDeque) {
801  deque<char> empty;
802  EXPECT_EQ("{}", Print(empty));
803 }
804 
805 TEST(PrintStlContainerTest, NonEmptyDeque) {
806  deque<int> non_empty;
807  non_empty.push_back(1);
808  non_empty.push_back(3);
809  EXPECT_EQ("{ 1, 3 }", Print(non_empty));
810 }
811 
812 #if GTEST_HAS_HASH_MAP_
813 
814 TEST(PrintStlContainerTest, OneElementHashMap) {
815  hash_map<int, char> map1;
816  map1[1] = 'a';
817  EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
818 }
819 
820 TEST(PrintStlContainerTest, HashMultiMap) {
821  hash_multimap<int, bool> map1;
822  map1.insert(make_pair(5, true));
823  map1.insert(make_pair(5, false));
824 
825  // Elements of hash_multimap can be printed in any order.
826  const string result = Print(map1);
827  EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
828  result == "{ (5, false), (5, true) }")
829  << " where Print(map1) returns \"" << result << "\".";
830 }
831 
832 #endif // GTEST_HAS_HASH_MAP_
833 
834 #if GTEST_HAS_HASH_SET_
835 
836 TEST(PrintStlContainerTest, HashSet) {
837  hash_set<string> set1;
838  set1.insert("hello");
839  EXPECT_EQ("{ \"hello\" }", Print(set1));
840 }
841 
842 TEST(PrintStlContainerTest, HashMultiSet) {
843  const int kSize = 5;
844  int a[kSize] = { 1, 1, 2, 5, 1 };
845  hash_multiset<int> set1(a, a + kSize);
846 
847  // Elements of hash_multiset can be printed in any order.
848  const string result = Print(set1);
849  const string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
850 
851  // Verifies the result matches the expected pattern; also extracts
852  // the numbers in the result.
853  ASSERT_EQ(expected_pattern.length(), result.length());
854  std::vector<int> numbers;
855  for (size_t i = 0; i != result.length(); i++) {
856  if (expected_pattern[i] == 'd') {
857  ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
858  numbers.push_back(result[i] - '0');
859  } else {
860  EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
861  << result;
862  }
863  }
864 
865  // Makes sure the result contains the right numbers.
866  std::sort(numbers.begin(), numbers.end());
867  std::sort(a, a + kSize);
868  EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
869 }
870 
871 #endif // GTEST_HAS_HASH_SET_
872 
873 TEST(PrintStlContainerTest, List) {
874  const string a[] = {
875  "hello",
876  "world"
877  };
878  const list<string> strings(a, a + 2);
879  EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
880 }
881 
882 TEST(PrintStlContainerTest, Map) {
883  map<int, bool> map1;
884  map1[1] = true;
885  map1[5] = false;
886  map1[3] = true;
887  EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
888 }
889 
890 TEST(PrintStlContainerTest, MultiMap) {
891  multimap<bool, int> map1;
892  // The make_pair template function would deduce the type as
893  // pair<bool, int> here, and since the key part in a multimap has to
894  // be constant, without a templated ctor in the pair class (as in
895  // libCstd on Solaris), make_pair call would fail to compile as no
896  // implicit conversion is found. Thus explicit typename is used
897  // here instead.
898  map1.insert(pair<const bool, int>(true, 0));
899  map1.insert(pair<const bool, int>(true, 1));
900  map1.insert(pair<const bool, int>(false, 2));
901  EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
902 }
903 
904 TEST(PrintStlContainerTest, Set) {
905  const unsigned int a[] = { 3, 0, 5 };
906  set<unsigned int> set1(a, a + 3);
907  EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
908 }
909 
910 TEST(PrintStlContainerTest, MultiSet) {
911  const int a[] = { 1, 1, 2, 5, 1 };
912  multiset<int> set1(a, a + 5);
913  EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
914 }
915 
916 TEST(PrintStlContainerTest, Pair) {
917  pair<const bool, int> p(true, 5);
918  EXPECT_EQ("(true, 5)", Print(p));
919 }
920 
921 TEST(PrintStlContainerTest, Vector) {
922  vector<int> v;
923  v.push_back(1);
924  v.push_back(2);
925  EXPECT_EQ("{ 1, 2 }", Print(v));
926 }
927 
928 TEST(PrintStlContainerTest, LongSequence) {
929  const int a[100] = { 1, 2, 3 };
930  const vector<int> v(a, a + 100);
931  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
932  "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
933 }
934 
935 TEST(PrintStlContainerTest, NestedContainer) {
936  const int a1[] = { 1, 2 };
937  const int a2[] = { 3, 4, 5 };
938  const list<int> l1(a1, a1 + 2);
939  const list<int> l2(a2, a2 + 3);
940 
941  vector<list<int> > v;
942  v.push_back(l1);
943  v.push_back(l2);
944  EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
945 }
946 
947 TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
948  const int a[3] = { 1, 2, 3 };
949  NativeArray<int> b(a, 3, RelationToSourceReference());
950  EXPECT_EQ("{ 1, 2, 3 }", Print(b));
951 }
952 
953 TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
954  const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
955  NativeArray<int[3]> b(a, 2, RelationToSourceReference());
956  EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
957 }
958 
959 // Tests that a class named iterator isn't treated as a container.
960 
961 struct iterator {
962  char x;
963 };
964 
965 TEST(PrintStlContainerTest, Iterator) {
966  iterator it = {};
967  EXPECT_EQ("1-byte object <00>", Print(it));
968 }
969 
970 // Tests that a class named const_iterator isn't treated as a container.
971 
973  char x;
974 };
975 
976 TEST(PrintStlContainerTest, ConstIterator) {
977  const_iterator it = {};
978  EXPECT_EQ("1-byte object <00>", Print(it));
979 }
980 
981 #if GTEST_HAS_TR1_TUPLE
982 // Tests printing ::std::tr1::tuples.
983 
984 // Tuples of various arities.
985 TEST(PrintTr1TupleTest, VariousSizes) {
987  EXPECT_EQ("()", Print(t0));
988 
990  EXPECT_EQ("(5)", Print(t1));
991 
992  ::std::tr1::tuple<char, bool> t2('a', true);
993  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
994 
995  ::std::tr1::tuple<bool, int, int> t3(false, 2, 3);
996  EXPECT_EQ("(false, 2, 3)", Print(t3));
997 
998  ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4);
999  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1000 
1001  ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1002  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1003 
1004  ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1005  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1006 
1008  false, 2, 3, 4, true, 6, 7);
1009  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1010 
1012  false, 2, 3, 4, true, 6, 7, true);
1013  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1014 
1016  false, 2, 3, 4, true, 6, 7, true, 9);
1017  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1018 
1019  const char* const str = "8";
1020  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1021  // an explicit type cast of NULL to be used.
1022  ::std::tr1::tuple<bool, char, short, testing::internal::Int32, // NOLINT
1023  testing::internal::Int64, float, double, const char*, void*, string>
1024  t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1025  ImplicitCast_<void*>(NULL), "10");
1026  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1027  " pointing to \"8\", NULL, \"10\")",
1028  Print(t10));
1029 }
1030 
1031 // Nested tuples.
1032 TEST(PrintTr1TupleTest, NestedTuple) {
1034  ::std::tr1::make_tuple(5, true), 'a');
1035  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1036 }
1037 
1038 #endif // GTEST_HAS_TR1_TUPLE
1039 
1040 #if GTEST_HAS_STD_TUPLE_
1041 // Tests printing ::std::tuples.
1042 
1043 // Tuples of various arities.
1044 TEST(PrintStdTupleTest, VariousSizes) {
1045  ::std::tuple<> t0;
1046  EXPECT_EQ("()", Print(t0));
1047 
1048  ::std::tuple<int> t1(5);
1049  EXPECT_EQ("(5)", Print(t1));
1050 
1051  ::std::tuple<char, bool> t2('a', true);
1052  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1053 
1054  ::std::tuple<bool, int, int> t3(false, 2, 3);
1055  EXPECT_EQ("(false, 2, 3)", Print(t3));
1056 
1057  ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1058  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1059 
1060  ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1061  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1062 
1063  ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1064  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1065 
1066  ::std::tuple<bool, int, int, int, bool, int, int> t7(
1067  false, 2, 3, 4, true, 6, 7);
1068  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1069 
1070  ::std::tuple<bool, int, int, int, bool, int, int, bool> t8(
1071  false, 2, 3, 4, true, 6, 7, true);
1072  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1073 
1074  ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
1075  false, 2, 3, 4, true, 6, 7, true, 9);
1076  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1077 
1078  const char* const str = "8";
1079  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1080  // an explicit type cast of NULL to be used.
1081  ::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT
1082  testing::internal::Int64, float, double, const char*, void*, string>
1083  t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1084  ImplicitCast_<void*>(NULL), "10");
1085  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1086  " pointing to \"8\", NULL, \"10\")",
1087  Print(t10));
1088 }
1089 
1090 // Nested tuples.
1091 TEST(PrintStdTupleTest, NestedTuple) {
1092  ::std::tuple< ::std::tuple<int, bool>, char> nested(
1093  ::std::make_tuple(5, true), 'a');
1094  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1095 }
1096 
1097 #endif // GTEST_LANG_CXX11
1098 
1099 // Tests printing user-defined unprintable types.
1100 
1101 // Unprintable types in the global namespace.
1102 TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
1103  EXPECT_EQ("1-byte object <00>",
1105 }
1106 
1107 // Unprintable types in a user namespace.
1108 TEST(PrintUnprintableTypeTest, InUserNamespace) {
1109  EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1111 }
1112 
1113 // Unprintable types are that too big to be printed completely.
1114 
1115 struct Big {
1116  Big() { memset(array, 0, sizeof(array)); }
1117  char array[257];
1118 };
1119 
1120 TEST(PrintUnpritableTypeTest, BigObject) {
1121  EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
1122  "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1123  "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1124  "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
1125  "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1126  "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1127  "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
1128  Print(Big()));
1129 }
1130 
1131 // Tests printing user-defined streamable types.
1132 
1133 // Streamable types in the global namespace.
1134 TEST(PrintStreamableTypeTest, InGlobalNamespace) {
1136  EXPECT_EQ("StreamableInGlobal", Print(x));
1137  EXPECT_EQ("StreamableInGlobal*", Print(&x));
1138 }
1139 
1140 // Printable template types in a user namespace.
1141 TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
1142  EXPECT_EQ("StreamableTemplateInFoo: 0",
1144 }
1145 
1146 // Tests printing user-defined types that have a PrintTo() function.
1147 TEST(PrintPrintableTypeTest, InUserNamespace) {
1148  EXPECT_EQ("PrintableViaPrintTo: 0",
1150 }
1151 
1152 // Tests printing a pointer to a user-defined type that has a <<
1153 // operator for its pointer.
1154 TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
1156  EXPECT_EQ("PointerPrintable*", Print(&x));
1157 }
1158 
1159 // Tests printing user-defined class template that have a PrintTo() function.
1160 TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
1161  EXPECT_EQ("PrintableViaPrintToTemplate: 5",
1163 }
1164 
1165 #if GTEST_HAS_PROTOBUF_
1166 
1167 // Tests printing a short proto2 message.
1168 TEST(PrintProto2MessageTest, PrintsShortDebugStringWhenItIsShort) {
1169  testing::internal::FooMessage msg;
1170  msg.set_int_field(2);
1171  msg.set_string_field("hello");
1172  EXPECT_PRED2(RE::FullMatch, Print(msg),
1173  "<int_field:\\s*2\\s+string_field:\\s*\"hello\">");
1174 }
1175 
1176 // Tests printing a long proto2 message.
1177 TEST(PrintProto2MessageTest, PrintsDebugStringWhenItIsLong) {
1178  testing::internal::FooMessage msg;
1179  msg.set_int_field(2);
1180  msg.set_string_field("hello");
1181  msg.add_names("peter");
1182  msg.add_names("paul");
1183  msg.add_names("mary");
1184  EXPECT_PRED2(RE::FullMatch, Print(msg),
1185  "<\n"
1186  "int_field:\\s*2\n"
1187  "string_field:\\s*\"hello\"\n"
1188  "names:\\s*\"peter\"\n"
1189  "names:\\s*\"paul\"\n"
1190  "names:\\s*\"mary\"\n"
1191  ">");
1192 }
1193 
1194 #endif // GTEST_HAS_PROTOBUF_
1195 
1196 // Tests that the universal printer prints both the address and the
1197 // value of a reference.
1198 TEST(PrintReferenceTest, PrintsAddressAndValue) {
1199  int n = 5;
1200  EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
1201 
1202  int a[2][3] = {
1203  { 0, 1, 2 },
1204  { 3, 4, 5 }
1205  };
1206  EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
1207  PrintByRef(a));
1208 
1209  const ::foo::UnprintableInFoo x;
1210  EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
1211  "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1212  PrintByRef(x));
1213 }
1214 
1215 // Tests that the universal printer prints a function pointer passed by
1216 // reference.
1217 TEST(PrintReferenceTest, HandlesFunctionPointer) {
1218  void (*fp)(int n) = &MyFunction;
1219  const string fp_pointer_string =
1220  PrintPointer(reinterpret_cast<const void*>(&fp));
1221  // We cannot directly cast &MyFunction to const void* because the
1222  // standard disallows casting between pointers to functions and
1223  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
1224  // this limitation.
1225  const string fp_string = PrintPointer(reinterpret_cast<const void*>(
1226  reinterpret_cast<internal::BiggestInt>(fp)));
1227  EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
1228  PrintByRef(fp));
1229 }
1230 
1231 // Tests that the universal printer prints a member function pointer
1232 // passed by reference.
1233 TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
1234  int (Foo::*p)(char ch) = &Foo::MyMethod;
1236  PrintByRef(p),
1237  "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
1238  Print(sizeof(p)) + "-byte object "));
1239 
1240  char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
1242  PrintByRef(p2),
1243  "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
1244  Print(sizeof(p2)) + "-byte object "));
1245 }
1246 
1247 // Tests that the universal printer prints a member variable pointer
1248 // passed by reference.
1249 TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
1250  int (Foo::*p) = &Foo::value; // NOLINT
1252  PrintByRef(p),
1253  "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
1254 }
1255 
1256 // Tests that FormatForComparisonFailureMessage(), which is used to print
1257 // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
1258 // fails, formats the operand in the desired way.
1259 
1260 // scalar
1261 TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
1262  EXPECT_STREQ("123",
1263  FormatForComparisonFailureMessage(123, 124).c_str());
1264 }
1265 
1266 // non-char pointer
1267 TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
1268  int n = 0;
1269  EXPECT_EQ(PrintPointer(&n),
1270  FormatForComparisonFailureMessage(&n, &n).c_str());
1271 }
1272 
1273 // non-char array
1274 TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
1275  // In expression 'array == x', 'array' is compared by pointer.
1276  // Therefore we want to print an array operand as a pointer.
1277  int n[] = { 1, 2, 3 };
1279  FormatForComparisonFailureMessage(n, n).c_str());
1280 }
1281 
1282 // Tests formatting a char pointer when it's compared with another pointer.
1283 // In this case we want to print it as a raw pointer, as the comparision is by
1284 // pointer.
1285 
1286 // char pointer vs pointer
1287 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
1288  // In expression 'p == x', where 'p' and 'x' are (const or not) char
1289  // pointers, the operands are compared by pointer. Therefore we
1290  // want to print 'p' as a pointer instead of a C string (we don't
1291  // even know if it's supposed to point to a valid C string).
1292 
1293  // const char*
1294  const char* s = "hello";
1296  FormatForComparisonFailureMessage(s, s).c_str());
1297 
1298  // char*
1299  char ch = 'a';
1300  EXPECT_EQ(PrintPointer(&ch),
1301  FormatForComparisonFailureMessage(&ch, &ch).c_str());
1302 }
1303 
1304 // wchar_t pointer vs pointer
1305 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
1306  // In expression 'p == x', where 'p' and 'x' are (const or not) char
1307  // pointers, the operands are compared by pointer. Therefore we
1308  // want to print 'p' as a pointer instead of a wide C string (we don't
1309  // even know if it's supposed to point to a valid wide C string).
1310 
1311  // const wchar_t*
1312  const wchar_t* s = L"hello";
1314  FormatForComparisonFailureMessage(s, s).c_str());
1315 
1316  // wchar_t*
1317  wchar_t ch = L'a';
1318  EXPECT_EQ(PrintPointer(&ch),
1319  FormatForComparisonFailureMessage(&ch, &ch).c_str());
1320 }
1321 
1322 // Tests formatting a char pointer when it's compared to a string object.
1323 // In this case we want to print the char pointer as a C string.
1324 
1325 #if GTEST_HAS_GLOBAL_STRING
1326 // char pointer vs ::string
1327 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
1328  const char* s = "hello \"world";
1329  EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
1330  FormatForComparisonFailureMessage(s, ::string()).c_str());
1331 
1332  // char*
1333  char str[] = "hi\1";
1334  char* p = str;
1335  EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
1336  FormatForComparisonFailureMessage(p, ::string()).c_str());
1337 }
1338 #endif
1339 
1340 // char pointer vs std::string
1341 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
1342  const char* s = "hello \"world";
1343  EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
1345 
1346  // char*
1347  char str[] = "hi\1";
1348  char* p = str;
1349  EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
1351 }
1352 
1353 #if GTEST_HAS_GLOBAL_WSTRING
1354 // wchar_t pointer vs ::wstring
1355 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
1356  const wchar_t* s = L"hi \"world";
1357  EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
1358  FormatForComparisonFailureMessage(s, ::wstring()).c_str());
1359 
1360  // wchar_t*
1361  wchar_t str[] = L"hi\1";
1362  wchar_t* p = str;
1363  EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
1364  FormatForComparisonFailureMessage(p, ::wstring()).c_str());
1365 }
1366 #endif
1367 
1368 #if GTEST_HAS_STD_WSTRING
1369 // wchar_t pointer vs std::wstring
1370 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
1371  const wchar_t* s = L"hi \"world";
1372  EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
1374 
1375  // wchar_t*
1376  wchar_t str[] = L"hi\1";
1377  wchar_t* p = str;
1378  EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
1380 }
1381 #endif
1382 
1383 // Tests formatting a char array when it's compared with a pointer or array.
1384 // In this case we want to print the array as a row pointer, as the comparison
1385 // is by pointer.
1386 
1387 // char array vs pointer
1388 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
1389  char str[] = "hi \"world\"";
1390  char* p = NULL;
1391  EXPECT_EQ(PrintPointer(str),
1392  FormatForComparisonFailureMessage(str, p).c_str());
1393 }
1394 
1395 // char array vs char array
1396 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
1397  const char str[] = "hi \"world\"";
1398  EXPECT_EQ(PrintPointer(str),
1399  FormatForComparisonFailureMessage(str, str).c_str());
1400 }
1401 
1402 // wchar_t array vs pointer
1403 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
1404  wchar_t str[] = L"hi \"world\"";
1405  wchar_t* p = NULL;
1406  EXPECT_EQ(PrintPointer(str),
1407  FormatForComparisonFailureMessage(str, p).c_str());
1408 }
1409 
1410 // wchar_t array vs wchar_t array
1411 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
1412  const wchar_t str[] = L"hi \"world\"";
1413  EXPECT_EQ(PrintPointer(str),
1414  FormatForComparisonFailureMessage(str, str).c_str());
1415 }
1416 
1417 // Tests formatting a char array when it's compared with a string object.
1418 // In this case we want to print the array as a C string.
1419 
1420 #if GTEST_HAS_GLOBAL_STRING
1421 // char array vs string
1422 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
1423  const char str[] = "hi \"w\0rld\"";
1424  EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped.
1425  // Embedded NUL terminates the string.
1426  FormatForComparisonFailureMessage(str, ::string()).c_str());
1427 }
1428 #endif
1429 
1430 // char array vs std::string
1431 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
1432  const char str[] = "hi \"world\"";
1433  EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
1435 }
1436 
1437 #if GTEST_HAS_GLOBAL_WSTRING
1438 // wchar_t array vs wstring
1439 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
1440  const wchar_t str[] = L"hi \"world\"";
1441  EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped.
1442  FormatForComparisonFailureMessage(str, ::wstring()).c_str());
1443 }
1444 #endif
1445 
1446 #if GTEST_HAS_STD_WSTRING
1447 // wchar_t array vs std::wstring
1448 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
1449  const wchar_t str[] = L"hi \"w\0rld\"";
1450  EXPECT_STREQ(
1451  "L\"hi \\\"w\"", // The content should be escaped.
1452  // Embedded NUL terminates the string.
1454 }
1455 #endif
1456 
1457 // Useful for testing PrintToString(). We cannot use EXPECT_EQ()
1458 // there as its implementation uses PrintToString(). The caller must
1459 // ensure that 'value' has no side effect.
1460 #define EXPECT_PRINT_TO_STRING_(value, expected_string) \
1461  EXPECT_TRUE(PrintToString(value) == (expected_string)) \
1462  << " where " #value " prints as " << (PrintToString(value))
1463 
1464 TEST(PrintToStringTest, WorksForScalar) {
1465  EXPECT_PRINT_TO_STRING_(123, "123");
1466 }
1467 
1468 TEST(PrintToStringTest, WorksForPointerToConstChar) {
1469  const char* p = "hello";
1470  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1471 }
1472 
1473 TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
1474  char s[] = "hello";
1475  char* p = s;
1476  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1477 }
1478 
1479 TEST(PrintToStringTest, EscapesForPointerToConstChar) {
1480  const char* p = "hello\n";
1481  EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
1482 }
1483 
1484 TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
1485  char s[] = "hello\1";
1486  char* p = s;
1487  EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
1488 }
1489 
1490 TEST(PrintToStringTest, WorksForArray) {
1491  int n[3] = { 1, 2, 3 };
1492  EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
1493 }
1494 
1495 TEST(PrintToStringTest, WorksForCharArray) {
1496  char s[] = "hello";
1497  EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
1498 }
1499 
1500 TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
1501  const char str_with_nul[] = "hello\0 world";
1502  EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
1503 
1504  char mutable_str_with_nul[] = "hello\0 world";
1505  EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
1506 }
1507 
1508 #undef EXPECT_PRINT_TO_STRING_
1509 
1510 TEST(UniversalTersePrintTest, WorksForNonReference) {
1511  ::std::stringstream ss;
1512  UniversalTersePrint(123, &ss);
1513  EXPECT_EQ("123", ss.str());
1514 }
1515 
1516 TEST(UniversalTersePrintTest, WorksForReference) {
1517  const int& n = 123;
1518  ::std::stringstream ss;
1519  UniversalTersePrint(n, &ss);
1520  EXPECT_EQ("123", ss.str());
1521 }
1522 
1523 TEST(UniversalTersePrintTest, WorksForCString) {
1524  const char* s1 = "abc";
1525  ::std::stringstream ss1;
1526  UniversalTersePrint(s1, &ss1);
1527  EXPECT_EQ("\"abc\"", ss1.str());
1528 
1529  char* s2 = const_cast<char*>(s1);
1530  ::std::stringstream ss2;
1531  UniversalTersePrint(s2, &ss2);
1532  EXPECT_EQ("\"abc\"", ss2.str());
1533 
1534  const char* s3 = NULL;
1535  ::std::stringstream ss3;
1536  UniversalTersePrint(s3, &ss3);
1537  EXPECT_EQ("NULL", ss3.str());
1538 }
1539 
1540 TEST(UniversalPrintTest, WorksForNonReference) {
1541  ::std::stringstream ss;
1542  UniversalPrint(123, &ss);
1543  EXPECT_EQ("123", ss.str());
1544 }
1545 
1546 TEST(UniversalPrintTest, WorksForReference) {
1547  const int& n = 123;
1548  ::std::stringstream ss;
1549  UniversalPrint(n, &ss);
1550  EXPECT_EQ("123", ss.str());
1551 }
1552 
1553 TEST(UniversalPrintTest, WorksForCString) {
1554  const char* s1 = "abc";
1555  ::std::stringstream ss1;
1556  UniversalPrint(s1, &ss1);
1557  EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
1558 
1559  char* s2 = const_cast<char*>(s1);
1560  ::std::stringstream ss2;
1561  UniversalPrint(s2, &ss2);
1562  EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
1563 
1564  const char* s3 = NULL;
1565  ::std::stringstream ss3;
1566  UniversalPrint(s3, &ss3);
1567  EXPECT_EQ("NULL", ss3.str());
1568 }
1569 
1570 TEST(UniversalPrintTest, WorksForCharArray) {
1571  const char str[] = "\"Line\0 1\"\nLine 2";
1572  ::std::stringstream ss1;
1573  UniversalPrint(str, &ss1);
1574  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
1575 
1576  const char mutable_str[] = "\"Line\0 1\"\nLine 2";
1577  ::std::stringstream ss2;
1578  UniversalPrint(mutable_str, &ss2);
1579  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
1580 }
1581 
1582 #if GTEST_HAS_TR1_TUPLE
1583 
1584 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) {
1585  Strings result = UniversalTersePrintTupleFieldsToStrings(
1586  ::std::tr1::make_tuple());
1587  EXPECT_EQ(0u, result.size());
1588 }
1589 
1590 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) {
1591  Strings result = UniversalTersePrintTupleFieldsToStrings(
1592  ::std::tr1::make_tuple(1));
1593  ASSERT_EQ(1u, result.size());
1594  EXPECT_EQ("1", result[0]);
1595 }
1596 
1597 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) {
1598  Strings result = UniversalTersePrintTupleFieldsToStrings(
1599  ::std::tr1::make_tuple(1, 'a'));
1600  ASSERT_EQ(2u, result.size());
1601  EXPECT_EQ("1", result[0]);
1602  EXPECT_EQ("'a' (97, 0x61)", result[1]);
1603 }
1604 
1605 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) {
1606  const int n = 1;
1607  Strings result = UniversalTersePrintTupleFieldsToStrings(
1609  ASSERT_EQ(2u, result.size());
1610  EXPECT_EQ("1", result[0]);
1611  EXPECT_EQ("\"a\"", result[1]);
1612 }
1613 
1614 #endif // GTEST_HAS_TR1_TUPLE
1615 
1616 #if GTEST_HAS_STD_TUPLE_
1617 
1618 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
1619  Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
1620  EXPECT_EQ(0u, result.size());
1621 }
1622 
1623 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
1624  Strings result = UniversalTersePrintTupleFieldsToStrings(
1625  ::std::make_tuple(1));
1626  ASSERT_EQ(1u, result.size());
1627  EXPECT_EQ("1", result[0]);
1628 }
1629 
1630 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
1631  Strings result = UniversalTersePrintTupleFieldsToStrings(
1632  ::std::make_tuple(1, 'a'));
1633  ASSERT_EQ(2u, result.size());
1634  EXPECT_EQ("1", result[0]);
1635  EXPECT_EQ("'a' (97, 0x61)", result[1]);
1636 }
1637 
1638 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
1639  const int n = 1;
1640  Strings result = UniversalTersePrintTupleFieldsToStrings(
1641  ::std::tuple<const int&, const char*>(n, "a"));
1642  ASSERT_EQ(2u, result.size());
1643  EXPECT_EQ("1", result[0]);
1644  EXPECT_EQ("\"a\"", result[1]);
1645 }
1646 
1647 #endif // GTEST_HAS_STD_TUPLE_
1648 
1649 } // namespace gtest_printers_test
1650 } // namespace testing
1651 
#define F(x, y, z)
Definition: md5.c:239
#define EXPECT_PRINT_TO_STRING_(value, expected_string)
To ImplicitCast_(To x)
Definition: gtest-port.h:1369
GTEST_API_ AssertionResult AssertionFailure()
Definition: gtest.cc:978
f
EnumWithoutPrinter
#define ASSERT_NE(val1, val2)
Definition: gtest.h:2053
::std::string PrintToString(const T &value)
EnumWithStreaming
EnumWithPrintTo
void UniversalTersePrint(const T &value,::std::ostream *os)
::std::string string
Definition: gtest-port.h:1129
XmlRpcServer s
::std::wstring wstring
Definition: gtest-port.h:1135
static string PrintPointer(const void *p)
#define ASSERT_EQ(val1, val2)
Definition: gtest.h:2049
std::ostream & operator<<(std::ostream &os, EnumWithStreaming e)
void PrintTo(EnumWithPrintTo e, std::ostream *os)
std::string FormatForComparisonFailureMessage(const T1 &value, const T2 &)
Definition: gtest.h:1455
#define EXPECT_LT(val1, val2)
Definition: gtest.h:2023
tuple make_tuple()
Definition: gtest-tuple.h:675
UNITTEST_START int result
Definition: unit1304.c:49
const char ** p
Definition: unit1394.c:76
unsigned int i
Definition: unit1303.c:79
TypeWithSize< 4 >::Int Int32
Definition: gtest-port.h:2436
memcpy(filename, filename1, strlen(filename1))
const char * str
Definition: unit1398.c:33
GTEST_API_ AssertionResult AssertionSuccess()
Definition: gtest.cc:973
Definition: unit1323.c:36
string PrintByRef(const T &value)
void UniversalPrint(const T &value,::std::ostream *os)
#define EXPECT_STREQ(expected, actual)
Definition: gtest.h:2088
TFSIMD_FORCE_INLINE const tfScalar & x() const
long long BiggestInt
Definition: gtest-port.h:2183
#define EXPECT_EQ(expected, actual)
Definition: gtest.h:2015
AssertionResult HasPrefix(const StringType &str, const StringType &prefix)
::std::vector< string > Strings
UNITTEST_START int * value
Definition: unit1602.c:51
TEST(UniversalPrintTest, WorksForCharArray)
#define EXPECT_TRUE(condition)
Definition: gtest.h:1952
TypeWithSize< 8 >::Int Int64
Definition: gtest-port.h:2438
#define EXPECT_PRED2(pred, v1, v2)


rc_tagdetect_client
Author(s): Monika Florek-Jasinska , Raphael Schaller
autogenerated on Sat Feb 13 2021 03:42:10