Modules | |
Global aligned box typedefs | |
Classes | |
class | Eigen::AlignedBox< _Scalar, _AmbientDim > |
An axis aligned box. More... | |
class | Eigen::AngleAxis< _Scalar > |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... | |
class | Eigen::Homogeneous< MatrixType, _Direction > |
Expression of one (or a set of) homogeneous vector(s) More... | |
class | Eigen::Hyperplane< _Scalar, _AmbientDim, _Options > |
A hyperplane. More... | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::ParametrizedLine< _Scalar, _AmbientDim, _Options > |
A parametrized line. More... | |
class | Eigen::Quaternion< _Scalar, _Options > |
The quaternion class used to represent 3D orientations and rotations. More... | |
class | Eigen::QuaternionBase< Derived > |
Base class for quaternion expressions. More... | |
class | Eigen::Rotation2D< _Scalar > |
Represents a rotation/orientation in a 2 dimensional space. More... | |
class | Scaling |
Represents a generic uniform scaling transformation. More... | |
class | Eigen::Transform< _Scalar, _Dim, _Mode, _Options > |
Represents an homogeneous transformation in a N dimensional space. More... | |
class | Eigen::Translation< _Scalar, _Dim > |
Represents a translation transformation. More... | |
Typedefs | |
typedef Transform< double, 2, Affine > | Eigen::Affine2d |
typedef Transform< float, 2, Affine > | Eigen::Affine2f |
typedef Transform< double, 3, Affine > | Eigen::Affine3d |
typedef Transform< float, 3, Affine > | Eigen::Affine3f |
typedef Transform< double, 2, AffineCompact > | Eigen::AffineCompact2d |
typedef Transform< float, 2, AffineCompact > | Eigen::AffineCompact2f |
typedef Transform< double, 3, AffineCompact > | Eigen::AffineCompact3d |
typedef Transform< float, 3, AffineCompact > | Eigen::AffineCompact3f |
typedef DiagonalMatrix< double, 2 > | Eigen::AlignedScaling2d |
typedef DiagonalMatrix< float, 2 > | Eigen::AlignedScaling2f |
typedef DiagonalMatrix< double, 3 > | Eigen::AlignedScaling3d |
typedef DiagonalMatrix< float, 3 > | Eigen::AlignedScaling3f |
typedef AngleAxis< double > | Eigen::AngleAxisd |
typedef AngleAxis< float > | Eigen::AngleAxisf |
typedef Transform< double, 2, Isometry > | Eigen::Isometry2d |
typedef Transform< float, 2, Isometry > | Eigen::Isometry2f |
typedef Transform< double, 3, Isometry > | Eigen::Isometry3d |
typedef Transform< float, 3, Isometry > | Eigen::Isometry3f |
typedef Transform< double, 2, Projective > | Eigen::Projective2d |
typedef Transform< float, 2, Projective > | Eigen::Projective2f |
typedef Transform< double, 3, Projective > | Eigen::Projective3d |
typedef Transform< float, 3, Projective > | Eigen::Projective3f |
typedef Quaternion< double > | Eigen::Quaterniond |
typedef Quaternion< float > | Eigen::Quaternionf |
typedef Map< Quaternion< double >, Aligned > | Eigen::QuaternionMapAlignedd |
typedef Map< Quaternion< float >, Aligned > | Eigen::QuaternionMapAlignedf |
typedef Map< Quaternion< double >, 0 > | Eigen::QuaternionMapd |
typedef Map< Quaternion< float >, 0 > | Eigen::QuaternionMapf |
typedef Rotation2D< double > | Eigen::Rotation2Dd |
typedef Rotation2D< float > | Eigen::Rotation2Df |
typedef Translation< double, 2 > | Eigen::Translation2d |
typedef Translation< float, 2 > | Eigen::Translation2f |
typedef Translation< double, 3 > | Eigen::Translation3d |
typedef Translation< float, 3 > | Eigen::Translation3f |
Functions | |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type | Eigen::MatrixBase< Derived >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC const CrossReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::cross3 (const MatrixBase< OtherDerived > &other) const |
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
EIGEN_DEVICE_FUNC const HNormalizedReturnType | Eigen::MatrixBase< Derived >::hnormalized () const |
homogeneous normalization More... | |
EIGEN_DEVICE_FUNC const HNormalizedReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::hnormalized () const |
column or row-wise homogeneous normalization More... | |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::MatrixBase< Derived >::homogeneous () const |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::homogeneous () const |
template<typename Derived , typename Scalar > | |
operator* (const MatrixBase< Derived > &matrix, const UniformScaling< Scalar > &s) | |
UniformScaling< float > | Eigen::Scaling (float s) |
UniformScaling< double > | Eigen::Scaling (double s) |
template<typename RealScalar > | |
UniformScaling< std::complex< RealScalar > > | Eigen::Scaling (const std::complex< RealScalar > &s) |
template<typename Scalar > | |
DiagonalMatrix< Scalar, 2 > | Eigen::Scaling (const Scalar &sx, const Scalar &sy) |
template<typename Scalar > | |
DiagonalMatrix< Scalar, 3 > | Eigen::Scaling (const Scalar &sx, const Scalar &sy, const Scalar &sz) |
template<typename Derived > | |
const DiagonalWrapper< const Derived > | Eigen::Scaling (const MatrixBase< Derived > &coeffs) |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Returns the transformation between two point sets. More... | |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::unitOrthogonal (void) const |
typedef Transform<double,2,Affine> Eigen::Affine2d |
Definition at line 712 of file Transform.h.
typedef Transform<float,2,Affine> Eigen::Affine2f |
Definition at line 708 of file Transform.h.
typedef Transform<double,3,Affine> Eigen::Affine3d |
Definition at line 714 of file Transform.h.
typedef Transform<float,3,Affine> Eigen::Affine3f |
Definition at line 710 of file Transform.h.
typedef Transform<double,2,AffineCompact> Eigen::AffineCompact2d |
Definition at line 721 of file Transform.h.
typedef Transform<float,2,AffineCompact> Eigen::AffineCompact2f |
Definition at line 717 of file Transform.h.
typedef Transform<double,3,AffineCompact> Eigen::AffineCompact3d |
Definition at line 723 of file Transform.h.
typedef Transform<float,3,AffineCompact> Eigen::AffineCompact3f |
Definition at line 719 of file Transform.h.
typedef DiagonalMatrix<double,2> Eigen::AlignedScaling2d |
Definition at line 148 of file Eigen/src/Geometry/Scaling.h.
typedef DiagonalMatrix<float, 2> Eigen::AlignedScaling2f |
Definition at line 146 of file Eigen/src/Geometry/Scaling.h.
typedef DiagonalMatrix<double,3> Eigen::AlignedScaling3d |
Definition at line 152 of file Eigen/src/Geometry/Scaling.h.
typedef DiagonalMatrix<float, 3> Eigen::AlignedScaling3f |
Definition at line 150 of file Eigen/src/Geometry/Scaling.h.
typedef AngleAxis<double> Eigen::AngleAxisd |
double precision angle-axis type
Definition at line 160 of file AngleAxis.h.
typedef AngleAxis<float> Eigen::AngleAxisf |
single precision angle-axis type
Definition at line 157 of file AngleAxis.h.
typedef Transform<double,2,Isometry> Eigen::Isometry2d |
Definition at line 703 of file Transform.h.
typedef Transform<float,2,Isometry> Eigen::Isometry2f |
Definition at line 699 of file Transform.h.
typedef Transform<double,3,Isometry> Eigen::Isometry3d |
Definition at line 705 of file Transform.h.
typedef Transform<float,3,Isometry> Eigen::Isometry3f |
Definition at line 701 of file Transform.h.
typedef Transform<double,2,Projective> Eigen::Projective2d |
Definition at line 730 of file Transform.h.
typedef Transform<float,2,Projective> Eigen::Projective2f |
Definition at line 726 of file Transform.h.
typedef Transform<double,3,Projective> Eigen::Projective3d |
Definition at line 732 of file Transform.h.
typedef Transform<float,3,Projective> Eigen::Projective3f |
Definition at line 728 of file Transform.h.
typedef Quaternion<double> Eigen::Quaterniond |
double precision quaternion type
Definition at line 305 of file Quaternion.h.
typedef Quaternion<float> Eigen::Quaternionf |
single precision quaternion type
Definition at line 302 of file Quaternion.h.
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion
Definition at line 417 of file Quaternion.h.
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion
Definition at line 414 of file Quaternion.h.
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion
Definition at line 411 of file Quaternion.h.
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion
Definition at line 408 of file Quaternion.h.
typedef Rotation2D<double> Eigen::Rotation2Dd |
double precision 2D rotation type
Definition at line 168 of file Rotation2D.h.
typedef Rotation2D<float> Eigen::Rotation2Df |
single precision 2D rotation type
Definition at line 165 of file Rotation2D.h.
typedef Translation<double,2> Eigen::Translation2d |
Definition at line 175 of file Translation.h.
typedef Translation<float, 2> Eigen::Translation2f |
Definition at line 174 of file Translation.h.
typedef Translation<double,3> Eigen::Translation3d |
Definition at line 177 of file Translation.h.
typedef Translation<float, 3> Eigen::Translation3f |
Definition at line 176 of file Translation.h.
|
inline |
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
With complex numbers, the cross product is implemented as
Definition at line 34 of file OrthoMethods.h.
EIGEN_DEVICE_FUNC const VectorwiseOp< ExpressionType, Direction >::CrossReturnType Eigen::VectorwiseOp< ExpressionType, Direction >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
The referenced matrix must have one dimension equal to 3. The result matrix has the same dimensions than the referenced one.
Definition at line 110 of file OrthoMethods.h.
|
inline |
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
Definition at line 82 of file OrthoMethods.h.
|
inline |
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
Definition at line 37 of file Eigen/src/Geometry/EulerAngles.h.
|
inline |
homogeneous normalization
*this
divided by that last coefficient.This can be used to convert homogeneous coordinates to affine coordinates.
It is essentially a shortcut for:
Example:
Output:
Definition at line 172 of file Homogeneous.h.
|
inline |
column or row-wise homogeneous normalization
*this
divided by the last coefficient of each column (or row).This can be used to convert homogeneous coordinates to affine coordinates.
It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of *this
.
Example:
Output:
Definition at line 196 of file Homogeneous.h.
|
inline |
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Output:
Definition at line 130 of file Homogeneous.h.
|
inline |
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Output:
Definition at line 148 of file Homogeneous.h.
|
related |
Concatenates a linear transformation matrix and a uniform scaling
Definition at line 117 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs a uniform scaling from scale factor s
Definition at line 121 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs a uniform scaling from scale factor s
Definition at line 123 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs a uniform scaling from scale factor s
Definition at line 126 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs a 2D axis aligned scaling
Definition at line 131 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs a 3D axis aligned scaling
Definition at line 135 of file Eigen/src/Geometry/Scaling.h.
|
inline |
Constructs an axis aligned scaling expression from vector expression coeffs This is an alias for coeffs.asDiagonal()
Definition at line 142 of file Eigen/src/Geometry/Scaling.h.
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters and such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets and where is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of when the input point sets have dimension .
Currently the method is working only for floating point matrices.
src | Source points . |
dst | Destination points . |
with_scaling | Sets when false is passed. |
minimizing the resudiual above. This transformation is always returned as an Eigen::Matrix.
|
inline |
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
Definition at line 226 of file OrthoMethods.h.