TensorBroadcasting.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
12 
13 namespace Eigen {
14 
22 namespace internal {
23 template<typename Broadcast, typename XprType>
24 struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
25 {
26  typedef typename XprType::Scalar Scalar;
28  typedef typename XprTraits::StorageKind StorageKind;
29  typedef typename XprTraits::Index Index;
30  typedef typename XprType::Nested Nested;
32  static const int NumDimensions = XprTraits::NumDimensions;
33  static const int Layout = XprTraits::Layout;
34 };
35 
36 template<typename Broadcast, typename XprType>
37 struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
38 {
40 };
41 
42 template<typename Broadcast, typename XprType>
43 struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
44 {
46 };
47 
48 template <typename Dims>
50  static const bool value = false;
51 };
52 template <>
53 struct is_input_scalar<Sizes<> > {
54  static const bool value = true;
55 };
56 #ifndef EIGEN_EMULATE_CXX11_META_H
57 template <typename std::size_t... Indices>
58 struct is_input_scalar<Sizes<Indices...> > {
59  static const bool value = (Sizes<Indices...>::total_size == 1);
60 };
61 #endif
62 
63 } // end namespace internal
64 
65 
66 
67 template<typename Broadcast, typename XprType>
68 class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors>
69 {
70  public:
73  typedef typename XprType::CoeffReturnType CoeffReturnType;
77 
78  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
79  : m_xpr(expr), m_broadcast(broadcast) {}
80 
81  EIGEN_DEVICE_FUNC
82  const Broadcast& broadcast() const { return m_broadcast; }
83 
84  EIGEN_DEVICE_FUNC
86  expression() const { return m_xpr; }
87 
88  protected:
89  typename XprType::Nested m_xpr;
90  const Broadcast m_broadcast;
91 };
92 
93 
94 // Eval as rvalue
95 template<typename Broadcast, typename ArgType, typename Device>
96 struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
97 {
99  typedef typename XprType::Index Index;
102  typedef typename XprType::Scalar Scalar;
107 
108  enum {
109  IsAligned = true,
112  RawAccess = false
113  };
114 
115  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
116  : m_broadcast(op.broadcast()),m_impl(op.expression(), device)
117  {
118  // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
119  // and store the result in a scalar. Instead one should reshape the scalar into a a N-D
120  // tensor with N >= 1 of 1 element first and then broadcast.
121  EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
122  const InputDimensions& input_dims = m_impl.dimensions();
123  const Broadcast& broadcast = op.broadcast();
124  for (int i = 0; i < NumDims; ++i) {
125  eigen_assert(input_dims[i] > 0);
126  m_dimensions[i] = input_dims[i] * broadcast[i];
127  }
128 
129  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
130  m_inputStrides[0] = 1;
131  m_outputStrides[0] = 1;
132  for (int i = 1; i < NumDims; ++i) {
133  m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
134  m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
135  }
136  } else {
137  m_inputStrides[NumDims-1] = 1;
138  m_outputStrides[NumDims-1] = 1;
139  for (int i = NumDims-2; i >= 0; --i) {
140  m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
141  m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
142  }
143  }
144  }
145 
146  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
147 
148  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
149  m_impl.evalSubExprsIfNeeded(NULL);
150  return true;
151  }
152 
153  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
154  m_impl.cleanup();
155  }
156 
157  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
158  {
160  return m_impl.coeff(0);
161  }
162 
163  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
164  return coeffColMajor(index);
165  } else {
166  return coeffRowMajor(index);
167  }
168  }
169 
170  // TODO: attempt to speed this up. The integer divisions and modulo are slow
171  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
172  {
173  Index inputIndex = 0;
174  for (int i = NumDims - 1; i > 0; --i) {
175  const Index idx = index / m_outputStrides[i];
176  if (internal::index_statically_eq<Broadcast>(i, 1)) {
177  eigen_assert(idx < m_impl.dimensions()[i]);
178  inputIndex += idx * m_inputStrides[i];
179  } else {
180  if (internal::index_statically_eq<InputDimensions>(i, 1)) {
181  eigen_assert(idx % m_impl.dimensions()[i] == 0);
182  } else {
183  inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
184  }
185  }
186  index -= idx * m_outputStrides[i];
187  }
188  if (internal::index_statically_eq<Broadcast>(0, 1)) {
189  eigen_assert(index < m_impl.dimensions()[0]);
190  inputIndex += index;
191  } else {
192  if (internal::index_statically_eq<InputDimensions>(0, 1)) {
193  eigen_assert(index % m_impl.dimensions()[0] == 0);
194  } else {
195  inputIndex += (index % m_impl.dimensions()[0]);
196  }
197  }
198  return m_impl.coeff(inputIndex);
199  }
200 
201  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
202  {
203  Index inputIndex = 0;
204  for (int i = 0; i < NumDims - 1; ++i) {
205  const Index idx = index / m_outputStrides[i];
206  if (internal::index_statically_eq<Broadcast>(i, 1)) {
207  eigen_assert(idx < m_impl.dimensions()[i]);
208  inputIndex += idx * m_inputStrides[i];
209  } else {
210  if (internal::index_statically_eq<InputDimensions>(i, 1)) {
211  eigen_assert(idx % m_impl.dimensions()[i] == 0);
212  } else {
213  inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
214  }
215  }
216  index -= idx * m_outputStrides[i];
217  }
218  if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
219  eigen_assert(index < m_impl.dimensions()[NumDims-1]);
220  inputIndex += index;
221  } else {
222  if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
223  eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
224  } else {
225  inputIndex += (index % m_impl.dimensions()[NumDims-1]);
226  }
227  }
228  return m_impl.coeff(inputIndex);
229  }
230 
231  template<int LoadMode>
232  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
233  {
235  return internal::pset1<PacketReturnType>(m_impl.coeff(0));
236  }
237 
238  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
239  return packetColMajor<LoadMode>(index);
240  } else {
241  return packetRowMajor<LoadMode>(index);
242  }
243  }
244 
245  // Ignore the LoadMode and always use unaligned loads since we can't guarantee
246  // the alignment at compile time.
247  template<int LoadMode>
248  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
249  {
250  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
251  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
252 
253  const Index originalIndex = index;
254 
255  Index inputIndex = 0;
256  for (int i = NumDims - 1; i > 0; --i) {
257  const Index idx = index / m_outputStrides[i];
258  if (internal::index_statically_eq<Broadcast>(i, 1)) {
259  eigen_assert(idx < m_impl.dimensions()[i]);
260  inputIndex += idx * m_inputStrides[i];
261  } else {
262  if (internal::index_statically_eq<InputDimensions>(i, 1)) {
263  eigen_assert(idx % m_impl.dimensions()[i] == 0);
264  } else {
265  inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
266  }
267  }
268  index -= idx * m_outputStrides[i];
269  }
270  Index innermostLoc;
271  if (internal::index_statically_eq<Broadcast>(0, 1)) {
272  eigen_assert(index < m_impl.dimensions()[0]);
273  innermostLoc = index;
274  } else {
275  if (internal::index_statically_eq<InputDimensions>(0, 1)) {
276  eigen_assert(index % m_impl.dimensions()[0] == 0);
277  innermostLoc = 0;
278  } else {
279  innermostLoc = index % m_impl.dimensions()[0];
280  }
281  }
282  inputIndex += innermostLoc;
283 
284  // Todo: this could be extended to the second dimension if we're not
285  // broadcasting alongside the first dimension, and so on.
286  if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
287  return m_impl.template packet<Unaligned>(inputIndex);
288  } else {
290  values[0] = m_impl.coeff(inputIndex);
291  for (int i = 1; i < PacketSize; ++i) {
292  values[i] = coeffColMajor(originalIndex+i);
293  }
294  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
295  return rslt;
296  }
297  }
298 
299  template<int LoadMode>
300  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
301  {
302  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
303  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
304 
305  const Index originalIndex = index;
306 
307  Index inputIndex = 0;
308  for (int i = 0; i < NumDims - 1; ++i) {
309  const Index idx = index / m_outputStrides[i];
310  if (internal::index_statically_eq<Broadcast>(i, 1)) {
311  eigen_assert(idx < m_impl.dimensions()[i]);
312  inputIndex += idx * m_inputStrides[i];
313  } else {
314  if (internal::index_statically_eq<InputDimensions>(i, 1)) {
315  eigen_assert(idx % m_impl.dimensions()[i] == 0);
316  } else {
317  inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
318  }
319  }
320  index -= idx * m_outputStrides[i];
321  }
322  Index innermostLoc;
323  if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
324  eigen_assert(index < m_impl.dimensions()[NumDims-1]);
325  innermostLoc = index;
326  } else {
327  if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
328  eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
329  innermostLoc = 0;
330  } else {
331  innermostLoc = index % m_impl.dimensions()[NumDims-1];
332  }
333  }
334  inputIndex += innermostLoc;
335 
336  // Todo: this could be extended to the second dimension if we're not
337  // broadcasting alongside the first dimension, and so on.
338  if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
339  return m_impl.template packet<Unaligned>(inputIndex);
340  } else {
342  values[0] = m_impl.coeff(inputIndex);
343  for (int i = 1; i < PacketSize; ++i) {
344  values[i] = coeffRowMajor(originalIndex+i);
345  }
346  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
347  return rslt;
348  }
349  }
350 
351  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
352  costPerCoeff(bool vectorized) const {
353  double compute_cost = TensorOpCost::AddCost<Index>();
354  if (NumDims > 0) {
355  for (int i = NumDims - 1; i > 0; --i) {
356  compute_cost += TensorOpCost::DivCost<Index>();
357  if (internal::index_statically_eq<Broadcast>(i, 1)) {
358  compute_cost +=
359  TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
360  } else {
361  if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
362  compute_cost += TensorOpCost::MulCost<Index>() +
363  TensorOpCost::ModCost<Index>() +
364  TensorOpCost::AddCost<Index>();
365  }
366  }
367  compute_cost +=
368  TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
369  }
370  }
371  return m_impl.costPerCoeff(vectorized) +
372  TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
373  }
374 
375  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
376 
377  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
378 
379  Broadcast functor() const { return m_broadcast; }
380 
381  protected:
382  const Broadcast m_broadcast;
383  Dimensions m_dimensions;
387 };
388 
389 
390 } // end namespace Eigen
391 
392 #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
Eigen::internal::traits< TensorBroadcastingOp >::Index Index
#define EIGEN_ALWAYS_INLINE
Definition: Macros.h:507
#define EIGEN_STRONG_INLINE
Definition: Macros.h:493
Eigen::internal::traits< TensorBroadcastingOp >::Scalar Scalar
std::vector< double > values
Definition: LDLT.h:16
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
A cost model used to limit the number of threads used for evaluating tensor expression.
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:122
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
Eigen::internal::traits< TensorBroadcastingOp >::StorageKind StorageKind
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
EIGEN_DEVICE_FUNC const internal::remove_all< typename XprType::Nested >::type & expression() const
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
Eigen::internal::nested< TensorBroadcastingOp >::type Nested
The tensor base class.
Definition: TensorBase.h:827
#define EIGEN_ALIGN_MAX
Definition: Macros.h:755
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType &expr, const Broadcast &broadcast)
Eigen::NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
XprType::CoeffReturnType CoeffReturnType
EIGEN_DEVICE_FUNC const Broadcast & broadcast() const
internal::packet_traits< Scalar >::type type
Definition: TensorMeta.h:51
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:12