Spline.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SPLINE_H
11 #define EIGEN_SPLINE_H
12 
13 #include "SplineFwd.h"
14 
15 namespace Eigen
16 {
34  template <typename _Scalar, int _Dim, int _Degree>
35  class Spline
36  {
37  public:
38  typedef _Scalar Scalar;
39  enum { Dimension = _Dim };
40  enum { Degree = _Degree };
41 
44 
47 
50 
53 
56 
59 
64  Spline()
65  : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
66  , m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
67  {
68  // in theory this code can go to the initializer list but it will get pretty
69  // much unreadable ...
70  enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
71  m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
72  m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
73  }
74 
80  template <typename OtherVectorType, typename OtherArrayType>
81  Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
82 
87  template <int OtherDegree>
89  m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
90 
94  const KnotVectorType& knots() const { return m_knots; }
95 
99  const ControlPointVectorType& ctrls() const { return m_ctrls; }
100 
112  PointType operator()(Scalar u) const;
113 
127  derivatives(Scalar u, DenseIndex order) const;
128 
134  template <int DerivativeOrder>
136  derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
137 
155  basisFunctions(Scalar u) const;
156 
171  basisFunctionDerivatives(Scalar u, DenseIndex order) const;
172 
178  template <int DerivativeOrder>
180  basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
181 
185  DenseIndex degree() const;
186 
191  DenseIndex span(Scalar u) const;
192 
197 
210  static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
211 
217  static BasisDerivativeType BasisFunctionDerivatives(
218  const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
219 
220  private:
221  KnotVectorType m_knots;
222  ControlPointVectorType m_ctrls;
224  template <typename DerivativeType>
225  static void BasisFunctionDerivativesImpl(
227  const DenseIndex order,
228  const DenseIndex p,
230  DerivativeType& N_);
231  };
232 
233  template <typename _Scalar, int _Dim, int _Degree>
238  {
239  // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
240  if (u <= knots(0)) return degree;
241  const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
242  return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
243  }
244 
245  template <typename _Scalar, int _Dim, int _Degree>
251  {
253 
254  const DenseIndex p = degree;
255  const DenseIndex i = Spline::Span(u, degree, knots);
256 
257  const KnotVectorType& U = knots;
258 
259  BasisVectorType left(p+1); left(0) = Scalar(0);
260  BasisVectorType right(p+1); right(0) = Scalar(0);
261 
264 
265  BasisVectorType N(1,p+1);
266  N(0) = Scalar(1);
267  for (DenseIndex j=1; j<=p; ++j)
268  {
269  Scalar saved = Scalar(0);
270  for (DenseIndex r=0; r<j; r++)
271  {
272  const Scalar tmp = N(r)/(right(r+1)+left(j-r));
273  N[r] = saved + right(r+1)*tmp;
274  saved = left(j-r)*tmp;
275  }
276  N(j) = saved;
277  }
278  return N;
279  }
280 
281  template <typename _Scalar, int _Dim, int _Degree>
283  {
284  if (_Degree == Dynamic)
285  return m_knots.size() - m_ctrls.cols() - 1;
286  else
287  return _Degree;
288  }
289 
290  template <typename _Scalar, int _Dim, int _Degree>
292  {
293  return Spline::Span(u, degree(), knots());
294  }
295 
296  template <typename _Scalar, int _Dim, int _Degree>
298  {
300 
301  const DenseIndex span = this->span(u);
302  const DenseIndex p = degree();
303  const BasisVectorType basis_funcs = basisFunctions(u);
304 
305  const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
307  return (ctrl_weights * ctrl_pts).rowwise().sum();
308  }
309 
310  /* --------------------------------------------------------------------------------------------- */
311 
312  template <typename SplineType, typename DerivativeType>
313  void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
314  {
317  enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
318 
321  typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
322 
323  const DenseIndex p = spline.degree();
324  const DenseIndex span = spline.span(u);
325 
326  const DenseIndex n = (std::min)(p, order);
327 
328  der.resize(Dimension,n+1);
329 
330  // Retrieve the basis function derivatives up to the desired order...
331  const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
332 
333  // ... and perform the linear combinations of the control points.
334  for (DenseIndex der_order=0; der_order<n+1; ++der_order)
335  {
336  const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
337  const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
338  der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
339  }
340  }
341 
342  template <typename _Scalar, int _Dim, int _Degree>
343  typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
345  {
347  derivativesImpl(*this, u, order, res);
348  return res;
349  }
350 
351  template <typename _Scalar, int _Dim, int _Degree>
352  template <int DerivativeOrder>
353  typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
355  {
357  derivativesImpl(*this, u, order, res);
358  return res;
359  }
360 
361  template <typename _Scalar, int _Dim, int _Degree>
362  typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
364  {
365  return Spline::BasisFunctions(u, degree(), knots());
366  }
367 
368  /* --------------------------------------------------------------------------------------------- */
369 
370 
371  template <typename _Scalar, int _Dim, int _Degree>
372  template <typename DerivativeType>
375  const DenseIndex order,
376  const DenseIndex p,
378  DerivativeType& N_)
379  {
380  typedef Spline<_Scalar, _Dim, _Degree> SplineType;
382 
383  typedef typename SplineTraits<SplineType>::Scalar Scalar;
385 
386  const DenseIndex span = SplineType::Span(u, p, U);
387 
388  const DenseIndex n = (std::min)(p, order);
389 
390  N_.resize(n+1, p+1);
391 
392  BasisVectorType left = BasisVectorType::Zero(p+1);
393  BasisVectorType right = BasisVectorType::Zero(p+1);
394 
395  Matrix<Scalar,Order,Order> ndu(p+1,p+1);
396 
397  Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
398 
399  ndu(0,0) = 1.0;
400 
401  DenseIndex j;
402  for (j=1; j<=p; ++j)
403  {
404  left[j] = u-U[span+1-j];
405  right[j] = U[span+j]-u;
406  saved = 0.0;
407 
408  for (DenseIndex r=0; r<j; ++r)
409  {
410  /* Lower triangle */
411  ndu(j,r) = right[r+1]+left[j-r];
412  temp = ndu(r,j-1)/ndu(j,r);
413  /* Upper triangle */
414  ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
415  saved = left[j-r] * temp;
416  }
417 
418  ndu(j,j) = static_cast<Scalar>(saved);
419  }
420 
421  for (j = p; j>=0; --j)
422  N_(0,j) = ndu(j,p);
423 
424  // Compute the derivatives
425  DerivativeType a(n+1,p+1);
426  DenseIndex r=0;
427  for (; r<=p; ++r)
428  {
429  DenseIndex s1,s2;
430  s1 = 0; s2 = 1; // alternate rows in array a
431  a(0,0) = 1.0;
432 
433  // Compute the k-th derivative
434  for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
435  {
436  Scalar d = 0.0;
437  DenseIndex rk,pk,j1,j2;
438  rk = r-k; pk = p-k;
439 
440  if (r>=k)
441  {
442  a(s2,0) = a(s1,0)/ndu(pk+1,rk);
443  d = a(s2,0)*ndu(rk,pk);
444  }
445 
446  if (rk>=-1) j1 = 1;
447  else j1 = -rk;
448 
449  if (r-1 <= pk) j2 = k-1;
450  else j2 = p-r;
451 
452  for (j=j1; j<=j2; ++j)
453  {
454  a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
455  d += a(s2,j)*ndu(rk+j,pk);
456  }
457 
458  if (r<=pk)
459  {
460  a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
461  d += a(s2,k)*ndu(r,pk);
462  }
463 
464  N_(k,r) = static_cast<Scalar>(d);
465  j = s1; s1 = s2; s2 = j; // Switch rows
466  }
467  }
468 
469  /* Multiply through by the correct factors */
470  /* (Eq. [2.9]) */
471  r = p;
472  for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
473  {
474  for (j=p; j>=0; --j) N_(k,j) *= r;
475  r *= p-k;
476  }
477  }
478 
479  template <typename _Scalar, int _Dim, int _Degree>
480  typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
482  {
484  BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
485  return der;
486  }
487 
488  template <typename _Scalar, int _Dim, int _Degree>
489  template <int DerivativeOrder>
490  typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
492  {
493  typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
494  BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
495  return der;
496  }
497 
498  template <typename _Scalar, int _Dim, int _Degree>
502  const DenseIndex order,
503  const DenseIndex degree,
505  {
507  BasisFunctionDerivativesImpl(u, order, degree, knots, der);
508  return der;
509  }
510 }
511 
512 #endif // EIGEN_SPLINE_H
d
A class representing multi-dimensional spline curves.
Definition: Spline.h:35
void derivativesImpl(const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
Definition: Spline.h:313
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType &knots)
Returns the spline&#39;s non-zero basis functions.
Definition: Spline.h:247
SplineTraits< Spline >::PointType PointType
The point type the spline is representing.
Definition: Spline.h:43
DenseIndex degree() const
Returns the spline degree.
Definition: Spline.h:282
KnotVectorType m_knots
Definition: Spline.h:221
SplineTraits< Spline >::BasisDerivativeType BasisDerivativeType
The data type used to store the values of the basis function derivatives.
Definition: Spline.h:55
SplineTraits< Spline >::BasisVectorType basisFunctions(Scalar u) const
Computes the non-zero basis functions at the given site.
Definition: Spline.h:363
Definition: LDLT.h:16
DenseIndex span(Scalar u) const
Returns the span within the knot vector in which u is falling.
Definition: Spline.h:291
static BasisDerivativeType BasisFunctionDerivatives(const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType &knots)
Computes the non-zero spline basis function derivatives up to given order.
Definition: Spline.h:500
Expression of a fixed-size or dynamic-size sub-vector.
const ControlPointVectorType & ctrls() const
Returns the ctrls of the underlying spline.
Definition: Spline.h:99
ControlPointVectorType m_ctrls
Definition: Spline.h:222
Spline()
Creates a (constant) zero spline. For Splines with dynamic degree, the resulting degree will be 0...
Definition: Spline.h:64
Expression of the multiple replication of a matrix or vector.
Definition: Replicate.h:61
SplineTraits< Spline >::ParameterVectorType ParameterVectorType
The data type used to store parameter vectors.
Definition: Spline.h:49
PointType operator()(Scalar u) const
Returns the spline value at a given site .
Definition: Spline.h:297
const Block< const Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajor > ConstRowXpr
Definition: BlockMethods.h:18
static DenseIndex Span(typename SplineTraits< Spline >::Scalar u, DenseIndex degree, const typename SplineTraits< Spline >::KnotVectorType &knots)
Computes the spang within the provided knot vector in which u is falling.
Definition: Spline.h:234
SplineTraits< Spline >::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order) const
Computes the non-zero spline basis function derivatives up to given order.
Definition: Spline.h:481
const KnotVectorType & knots() const
Returns the knots of the underlying spline.
Definition: Spline.h:94
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition: Meta.h:25
SplineTraits< Spline >::ControlPointVectorType ControlPointVectorType
The data type representing the spline&#39;s control points.
Definition: Spline.h:58
SplineTraits< Spline >::DerivativeType derivatives(Scalar u, DenseIndex order) const
Evaluation of spline derivatives of up-to given order.
Definition: Spline.h:344
Spline(const Spline< Scalar, Dimension, OtherDegree > &spline)
Copy constructor for splines.
Definition: Spline.h:88
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Spline(const OtherVectorType &knots, const OtherArrayType &ctrls)
Creates a spline from a knot vector and control points.
Definition: Spline.h:81
General-purpose arrays with easy API for coefficient-wise operations.
Definition: Array.h:45
SplineTraits< Spline >::BasisVectorType BasisVectorType
The data type used to store non-zero basis functions.
Definition: Spline.h:52
SplineTraits< Spline >::KnotVectorType KnotVectorType
The data type used to store knot vectors.
Definition: Spline.h:46
const int Dynamic
Definition: Constants.h:21
static const int N
Definition: TensorIntDiv.h:84
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
_Scalar Scalar
Definition: Spline.h:38
static void BasisFunctionDerivativesImpl(const typename Spline< _Scalar, _Dim, _Degree >::Scalar u, const DenseIndex order, const DenseIndex p, const typename Spline< _Scalar, _Dim, _Degree >::KnotVectorType &U, DerivativeType &N_)
Definition: Spline.h:373


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:03