10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H 11 #define EIGEN_GENERAL_MATRIX_MATRIX_H 22 typename LhsScalar,
int LhsStorageOrder,
bool ConjugateLhs,
23 typename RhsScalar,
int RhsStorageOrder,
bool ConjugateRhs>
31 const LhsScalar* lhs,
Index lhsStride,
32 const RhsScalar* rhs,
Index rhsStride,
33 ResScalar* res,
Index resStride,
43 ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
51 typename LhsScalar,
int LhsStorageOrder,
bool ConjugateLhs,
52 typename RhsScalar,
int RhsStorageOrder,
bool ConjugateRhs>
60 const LhsScalar* _lhs,
Index lhsStride,
61 const RhsScalar* _rhs,
Index rhsStride,
62 ResScalar* _res,
Index resStride,
70 LhsMapper lhs(_lhs,lhsStride);
71 RhsMapper rhs(_rhs,rhsStride);
72 ResMapper res(_res, resStride);
75 Index mc = (std::min)(rows,blocking.
mc());
76 Index nc = (std::min)(cols,blocking.
nc());
82 #ifdef EIGEN_HAS_OPENMP 86 int tid = omp_get_thread_num();
87 int threads = omp_get_num_threads();
89 LhsScalar* blockA = blocking.
blockA();
92 std::size_t sizeB = kc*nc;
96 for(
Index k=0; k<depth; k+=kc)
98 const Index actual_kc = (std::min)(k+kc,depth)-k;
102 pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc);
110 while(info[tid].users!=0) {}
111 info[tid].users += threads;
113 pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);
119 for(
int shift=0; shift<threads; ++shift)
121 int i = (tid+shift)%threads;
127 while(info[i].sync!=k) {
131 gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
135 for(
Index j=nc; j<cols; j+=nc)
137 const Index actual_nc = (std::min)(j+nc,cols)-j;
140 pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc);
143 gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha);
148 for(
Index i=0; i<threads; ++i)
154 #endif // EIGEN_HAS_OPENMP 159 std::size_t sizeA = kc*mc;
160 std::size_t sizeB = kc*nc;
165 const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;
168 for(
Index i2=0; i2<rows; i2+=mc)
170 const Index actual_mc = (std::min)(i2+mc,rows)-i2;
172 for(
Index k2=0; k2<depth; k2+=kc)
174 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
180 pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);
183 for(
Index j2=0; j2<cols; j2+=nc)
185 const Index actual_nc = (std::min)(j2+nc,cols)-j2;
190 if((!pack_rhs_once) || i2==0)
191 pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);
194 gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
208 template<
typename Scalar,
typename Index,
typename Gemm,
typename Lhs,
typename Rhs,
typename Dest,
typename BlockingType>
211 gemm_functor(
const Lhs& lhs,
const Rhs& rhs, Dest& dest,
const Scalar& actualAlpha, BlockingType& blocking)
212 : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
217 m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads);
218 m_blocking.allocateA();
227 &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
228 &m_rhs.coeffRef(0,
col), m_rhs.outerStride(),
229 (Scalar*)&(m_dest.coeffRef(row,
col)), m_dest.outerStride(),
230 m_actualAlpha, m_blocking, info);
243 template<
int StorageOrder,
typename LhsScalar,
typename RhsScalar,
int MaxRows,
int MaxCols,
int MaxDepth,
int KcFactor=1,
246 template<
typename _LhsScalar,
typename _RhsScalar>
263 : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0)
270 inline LhsScalar*
blockA() {
return m_blockA; }
271 inline RhsScalar*
blockB() {
return m_blockB; }
274 template<
int StorageOrder,
typename _LhsScalar,
typename _RhsScalar,
int MaxRows,
int MaxCols,
int MaxDepth,
int KcFactor>
277 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
278 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
289 SizeA = ActualRows * MaxDepth,
290 SizeB = ActualCols * MaxDepth
293 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES 305 this->m_mc = ActualRows;
306 this->m_nc = ActualCols;
307 this->m_kc = MaxDepth;
308 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES 309 this->m_blockA = m_staticA;
310 this->m_blockB = m_staticB;
325 template<
int StorageOrder,
typename _LhsScalar,
typename _RhsScalar,
int MaxRows,
int MaxCols,
int MaxDepth,
int KcFactor>
328 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
329 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
351 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
355 Index n = this->m_nc;
356 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads);
359 m_sizeA = this->m_mc * this->m_kc;
360 m_sizeB = this->m_kc * this->m_nc;
370 Index m = this->m_mc;
371 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
372 m_sizeA = this->m_mc * this->m_kc;
373 m_sizeB = this->m_kc * this->m_nc;
378 if(this->m_blockA==0)
379 this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
384 if(this->m_blockB==0)
385 this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
405 template<
typename Lhs,
typename Rhs>
427 template<
typename Dst>
430 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
431 lazyproduct::evalTo(dst, lhs, rhs);
435 scaleAndAddTo(dst, lhs, rhs, Scalar(1));
439 template<
typename Dst>
442 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
443 lazyproduct::addTo(dst, lhs, rhs);
445 scaleAndAddTo(dst,lhs, rhs, Scalar(1));
448 template<
typename Dst>
451 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
452 lazyproduct::subTo(dst, lhs, rhs);
454 scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
457 template<
typename Dest>
460 eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
461 if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0)
467 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
468 * RhsBlasTraits::extractScalarFactor(a_rhs);
471 Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
477 LhsScalar, (ActualLhsTypeCleaned::Flags&
RowMajorBit) ?
RowMajor : ColMajor,
bool(LhsBlasTraits::NeedToConjugate),
478 RhsScalar, (ActualRhsTypeCleaned::Flags&
RowMajorBit) ?
RowMajor : ColMajor,
bool(RhsBlasTraits::NeedToConjugate),
480 ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
482 BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1,
true);
483 internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==
Dynamic)>
484 (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&
RowMajorBit);
492 #endif // EIGEN_GENERAL_MATRIX_MATRIX_H void initParallel(Index rows, Index cols, Index depth, Index num_threads)
gebp_traits< LhsScalar, RhsScalar > Traits
gemm_blocking_space(Index, Index, Index, Index, bool)
#define EIGEN_STRONG_INLINE
gebp_traits< LhsScalar, RhsScalar > Traits
internal::remove_all< ActualRhsType >::type ActualRhsTypeCleaned
Expression of the product of two arbitrary matrices or vectors.
ScalarBinaryOpTraits< LhsScalar, RhsScalar >::ReturnType ResScalar
RhsBlasTraits::DirectLinearAccessType ActualRhsType
static EIGEN_STRONG_INLINE void run(Index rows, Index cols, Index depth, const LhsScalar *lhs, Index lhsStride, const RhsScalar *rhs, Index rhsStride, ResScalar *res, Index resStride, ResScalar alpha, level3_blocking< RhsScalar, LhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
Expression of the transpose of a matrix.
EIGEN_DEVICE_FUNC void aligned_delete(T *ptr, std::size_t size)
conditional< Transpose, _LhsScalar, _RhsScalar >::type RhsScalar
internal::remove_all< ActualLhsType >::type ActualLhsTypeCleaned
static void subTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
void initParallel(Index, Index, Index, Index)
const unsigned int RowMajorBit
gemm_functor(const Lhs &lhs, const Rhs &rhs, Dest &dest, const Scalar &actualAlpha, BlockingType &blocking)
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
ScalarBinaryOpTraits< LhsScalar, RhsScalar >::ReturnType ResScalar
conditional< Transpose, _RhsScalar, _LhsScalar >::type LhsScalar
#define EIGEN_DEFAULT_ALIGN_BYTES
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
void initParallelSession(Index num_threads) const
internal::blas_traits< Rhs > RhsBlasTraits
conditional< Transpose, _RhsScalar, _LhsScalar >::type LhsScalar
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
conditional< Transpose, _LhsScalar, _RhsScalar >::type RhsScalar
EIGEN_DEVICE_FUNC RowXpr row(Index i)
This is the const version of row(). */.
gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
gebp_traits< RhsScalar, LhsScalar > Traits
internal::blas_traits< Lhs > LhsBlasTraits
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
static void evalTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
gebp_traits< LhsScalar, RhsScalar > Traits
LhsBlasTraits::DirectLinearAccessType ActualLhsType
static void addTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
BlockingType & m_blocking
static void run(Index rows, Index cols, Index depth, const LhsScalar *_lhs, Index lhsStride, const RhsScalar *_rhs, Index rhsStride, ResScalar *_res, Index resStride, ResScalar alpha, level3_blocking< LhsScalar, RhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
static void scaleAndAddTo(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar &alpha)
#define eigen_internal_assert(x)
void run(Expr &expr, Dev &dev)
generic_product_impl< Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode > lazyproduct
Product< Lhs, Rhs >::Scalar Scalar
#define EIGEN_UNUSED_VARIABLE(var)