Eigen/src/Core/arch/SSE/MathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 /* The sin, cos, exp, and log functions of this file come from
12  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
13  */
14 
15 #ifndef EIGEN_MATH_FUNCTIONS_SSE_H
16 #define EIGEN_MATH_FUNCTIONS_SSE_H
17 
18 namespace Eigen {
19 
20 namespace internal {
21 
24 {
25  Packet4f x = _x;
29 
30  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
31 
32  /* the smallest non denormalized float number */
33  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
34  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f);
35 
36  /* natural logarithm computed for 4 simultaneous float
37  return NaN for x <= 0
38  */
39  _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
40  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
41  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
42  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
43  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
44  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
45  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
46  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
47  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
48  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
49  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
50  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
51 
52 
53  Packet4i emm0;
54 
55  Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN
56  Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
57 
58  x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
59  emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
60 
61  /* keep only the fractional part */
62  x = _mm_and_ps(x, p4f_inv_mant_mask);
63  x = _mm_or_ps(x, p4f_half);
64 
65  emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
66  Packet4f e = padd(Packet4f(_mm_cvtepi32_ps(emm0)), p4f_1);
67 
68  /* part2:
69  if( x < SQRTHF ) {
70  e -= 1;
71  x = x + x - 1.0;
72  } else { x = x - 1.0; }
73  */
74  Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
75  Packet4f tmp = pand(x, mask);
76  x = psub(x, p4f_1);
77  e = psub(e, pand(p4f_1, mask));
78  x = padd(x, tmp);
79 
80  Packet4f x2 = pmul(x,x);
81  Packet4f x3 = pmul(x2,x);
82 
83  Packet4f y, y1, y2;
84  y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
85  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
86  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
87  y = pmadd(y , x, p4f_cephes_log_p2);
88  y1 = pmadd(y1, x, p4f_cephes_log_p5);
89  y2 = pmadd(y2, x, p4f_cephes_log_p8);
90  y = pmadd(y, x3, y1);
91  y = pmadd(y, x3, y2);
92  y = pmul(y, x3);
93 
94  y1 = pmul(e, p4f_cephes_log_q1);
95  tmp = pmul(x2, p4f_half);
96  y = padd(y, y1);
97  x = psub(x, tmp);
98  y2 = pmul(e, p4f_cephes_log_q2);
99  x = padd(x, y);
100  x = padd(x, y2);
101  // negative arg will be NAN, 0 will be -INF
102  return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
103  _mm_and_ps(iszero_mask, p4f_minus_inf));
104 }
105 
108 {
109  Packet4f x = _x;
112  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
113 
114 
115  _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
116  _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
117 
118  _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
119  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
120  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
121 
122  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
123  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
124  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
125  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
126  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
127  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
128 
129  Packet4f tmp, fx;
130  Packet4i emm0;
131 
132  // clamp x
133  x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
134 
135  /* express exp(x) as exp(g + n*log(2)) */
136  fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
137 
138 #ifdef EIGEN_VECTORIZE_SSE4_1
139  fx = _mm_floor_ps(fx);
140 #else
141  emm0 = _mm_cvttps_epi32(fx);
142  tmp = _mm_cvtepi32_ps(emm0);
143  /* if greater, substract 1 */
144  Packet4f mask = _mm_cmpgt_ps(tmp, fx);
145  mask = _mm_and_ps(mask, p4f_1);
146  fx = psub(tmp, mask);
147 #endif
148 
149  tmp = pmul(fx, p4f_cephes_exp_C1);
150  Packet4f z = pmul(fx, p4f_cephes_exp_C2);
151  x = psub(x, tmp);
152  x = psub(x, z);
153 
154  z = pmul(x,x);
155 
156  Packet4f y = p4f_cephes_exp_p0;
157  y = pmadd(y, x, p4f_cephes_exp_p1);
158  y = pmadd(y, x, p4f_cephes_exp_p2);
159  y = pmadd(y, x, p4f_cephes_exp_p3);
160  y = pmadd(y, x, p4f_cephes_exp_p4);
161  y = pmadd(y, x, p4f_cephes_exp_p5);
162  y = pmadd(y, z, x);
163  y = padd(y, p4f_1);
164 
165  // build 2^n
166  emm0 = _mm_cvttps_epi32(fx);
167  emm0 = _mm_add_epi32(emm0, p4i_0x7f);
168  emm0 = _mm_slli_epi32(emm0, 23);
169  return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x);
170 }
173 {
174  Packet2d x = _x;
175 
179 
180  _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437);
181  _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
182 
183  _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
184 
185  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
186  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
187  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
188 
189  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
190  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
191  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
192  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
193 
194  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
195  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
196  static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
197 
198  Packet2d tmp, fx;
199  Packet4i emm0;
200 
201  // clamp x
202  x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
203  /* express exp(x) as exp(g + n*log(2)) */
204  fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
205 
206 #ifdef EIGEN_VECTORIZE_SSE4_1
207  fx = _mm_floor_pd(fx);
208 #else
209  emm0 = _mm_cvttpd_epi32(fx);
210  tmp = _mm_cvtepi32_pd(emm0);
211  /* if greater, substract 1 */
212  Packet2d mask = _mm_cmpgt_pd(tmp, fx);
213  mask = _mm_and_pd(mask, p2d_1);
214  fx = psub(tmp, mask);
215 #endif
216 
217  tmp = pmul(fx, p2d_cephes_exp_C1);
218  Packet2d z = pmul(fx, p2d_cephes_exp_C2);
219  x = psub(x, tmp);
220  x = psub(x, z);
221 
222  Packet2d x2 = pmul(x,x);
223 
224  Packet2d px = p2d_cephes_exp_p0;
225  px = pmadd(px, x2, p2d_cephes_exp_p1);
226  px = pmadd(px, x2, p2d_cephes_exp_p2);
227  px = pmul (px, x);
228 
229  Packet2d qx = p2d_cephes_exp_q0;
230  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
231  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
232  qx = pmadd(qx, x2, p2d_cephes_exp_q3);
233 
234  x = pdiv(px,psub(qx,px));
235  x = pmadd(p2d_2,x,p2d_1);
236 
237  // build 2^n
238  emm0 = _mm_cvttpd_epi32(fx);
239  emm0 = _mm_add_epi32(emm0, p4i_1023_0);
240  emm0 = _mm_slli_epi32(emm0, 20);
241  emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
242  return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x);
243 }
244 
245 /* evaluation of 4 sines at onces, using SSE2 intrinsics.
246 
247  The code is the exact rewriting of the cephes sinf function.
248  Precision is excellent as long as x < 8192 (I did not bother to
249  take into account the special handling they have for greater values
250  -- it does not return garbage for arguments over 8192, though, but
251  the extra precision is missing).
252 
253  Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
254  surprising but correct result.
255 */
256 
259 {
260  Packet4f x = _x;
263 
268 
269  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
270 
271  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
272  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
273  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
274  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
275  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
276  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
277  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
278  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
279  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
280  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
281 
282  Packet4f xmm1, xmm2, xmm3, sign_bit, y;
283 
284  Packet4i emm0, emm2;
285  sign_bit = x;
286  /* take the absolute value */
287  x = pabs(x);
288 
289  /* take the modulo */
290 
291  /* extract the sign bit (upper one) */
292  sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
293 
294  /* scale by 4/Pi */
295  y = pmul(x, p4f_cephes_FOPI);
296 
297  /* store the integer part of y in mm0 */
298  emm2 = _mm_cvttps_epi32(y);
299  /* j=(j+1) & (~1) (see the cephes sources) */
300  emm2 = _mm_add_epi32(emm2, p4i_1);
301  emm2 = _mm_and_si128(emm2, p4i_not1);
302  y = _mm_cvtepi32_ps(emm2);
303  /* get the swap sign flag */
304  emm0 = _mm_and_si128(emm2, p4i_4);
305  emm0 = _mm_slli_epi32(emm0, 29);
306  /* get the polynom selection mask
307  there is one polynom for 0 <= x <= Pi/4
308  and another one for Pi/4<x<=Pi/2
309 
310  Both branches will be computed.
311  */
312  emm2 = _mm_and_si128(emm2, p4i_2);
313  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
314 
315  Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
316  Packet4f poly_mask = _mm_castsi128_ps(emm2);
317  sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
318 
319  /* The magic pass: "Extended precision modular arithmetic"
320  x = ((x - y * DP1) - y * DP2) - y * DP3; */
321  xmm1 = pmul(y, p4f_minus_cephes_DP1);
322  xmm2 = pmul(y, p4f_minus_cephes_DP2);
323  xmm3 = pmul(y, p4f_minus_cephes_DP3);
324  x = padd(x, xmm1);
325  x = padd(x, xmm2);
326  x = padd(x, xmm3);
327 
328  /* Evaluate the first polynom (0 <= x <= Pi/4) */
329  y = p4f_coscof_p0;
330  Packet4f z = _mm_mul_ps(x,x);
331 
332  y = pmadd(y, z, p4f_coscof_p1);
333  y = pmadd(y, z, p4f_coscof_p2);
334  y = pmul(y, z);
335  y = pmul(y, z);
336  Packet4f tmp = pmul(z, p4f_half);
337  y = psub(y, tmp);
338  y = padd(y, p4f_1);
339 
340  /* Evaluate the second polynom (Pi/4 <= x <= 0) */
341 
342  Packet4f y2 = p4f_sincof_p0;
343  y2 = pmadd(y2, z, p4f_sincof_p1);
344  y2 = pmadd(y2, z, p4f_sincof_p2);
345  y2 = pmul(y2, z);
346  y2 = pmul(y2, x);
347  y2 = padd(y2, x);
348 
349  /* select the correct result from the two polynoms */
350  y2 = _mm_and_ps(poly_mask, y2);
351  y = _mm_andnot_ps(poly_mask, y);
352  y = _mm_or_ps(y,y2);
353  /* update the sign */
354  return _mm_xor_ps(y, sign_bit);
355 }
356 
357 /* almost the same as psin */
360 {
361  Packet4f x = _x;
364 
369 
370  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
371  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
372  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
373  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
374  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
375  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
376  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
377  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
378  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
379  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
380 
381  Packet4f xmm1, xmm2, xmm3, y;
382  Packet4i emm0, emm2;
383 
384  x = pabs(x);
385 
386  /* scale by 4/Pi */
387  y = pmul(x, p4f_cephes_FOPI);
388 
389  /* get the integer part of y */
390  emm2 = _mm_cvttps_epi32(y);
391  /* j=(j+1) & (~1) (see the cephes sources) */
392  emm2 = _mm_add_epi32(emm2, p4i_1);
393  emm2 = _mm_and_si128(emm2, p4i_not1);
394  y = _mm_cvtepi32_ps(emm2);
395 
396  emm2 = _mm_sub_epi32(emm2, p4i_2);
397 
398  /* get the swap sign flag */
399  emm0 = _mm_andnot_si128(emm2, p4i_4);
400  emm0 = _mm_slli_epi32(emm0, 29);
401  /* get the polynom selection mask */
402  emm2 = _mm_and_si128(emm2, p4i_2);
403  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
404 
405  Packet4f sign_bit = _mm_castsi128_ps(emm0);
406  Packet4f poly_mask = _mm_castsi128_ps(emm2);
407 
408  /* The magic pass: "Extended precision modular arithmetic"
409  x = ((x - y * DP1) - y * DP2) - y * DP3; */
410  xmm1 = pmul(y, p4f_minus_cephes_DP1);
411  xmm2 = pmul(y, p4f_minus_cephes_DP2);
412  xmm3 = pmul(y, p4f_minus_cephes_DP3);
413  x = padd(x, xmm1);
414  x = padd(x, xmm2);
415  x = padd(x, xmm3);
416 
417  /* Evaluate the first polynom (0 <= x <= Pi/4) */
418  y = p4f_coscof_p0;
419  Packet4f z = pmul(x,x);
420 
421  y = pmadd(y,z,p4f_coscof_p1);
422  y = pmadd(y,z,p4f_coscof_p2);
423  y = pmul(y, z);
424  y = pmul(y, z);
425  Packet4f tmp = _mm_mul_ps(z, p4f_half);
426  y = psub(y, tmp);
427  y = padd(y, p4f_1);
428 
429  /* Evaluate the second polynom (Pi/4 <= x <= 0) */
430  Packet4f y2 = p4f_sincof_p0;
431  y2 = pmadd(y2, z, p4f_sincof_p1);
432  y2 = pmadd(y2, z, p4f_sincof_p2);
433  y2 = pmul(y2, z);
434  y2 = pmadd(y2, x, x);
435 
436  /* select the correct result from the two polynoms */
437  y2 = _mm_and_ps(poly_mask, y2);
438  y = _mm_andnot_ps(poly_mask, y);
439  y = _mm_or_ps(y,y2);
440 
441  /* update the sign */
442  return _mm_xor_ps(y, sign_bit);
443 }
444 
445 #if EIGEN_FAST_MATH
446 
447 // Functions for sqrt.
448 // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
449 // of Newton's method, at a cost of 1-2 bits of precision as opposed to the
450 // exact solution. It does not handle +inf, or denormalized numbers correctly.
451 // The main advantage of this approach is not just speed, but also the fact that
452 // it can be inlined and pipelined with other computations, further reducing its
453 // effective latency. This is similar to Quake3's fast inverse square root.
454 // For detail see here: http://www.beyond3d.com/content/articles/8/
457 {
458  Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
459  Packet4f denormal_mask = _mm_and_ps(
460  _mm_cmpge_ps(_x, _mm_setzero_ps()),
461  _mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
462 
463  // Compute approximate reciprocal sqrt.
464  Packet4f x = _mm_rsqrt_ps(_x);
465  // Do a single step of Newton's iteration.
466  x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
467  // Flush results for denormals to zero.
468  return _mm_andnot_ps(denormal_mask, pmul(_x,x));
469 }
470 
471 #else
472 
474 Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
475 
476 #endif
477 
479 Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
480 
481 #if EIGEN_FAST_MATH
482 
487  _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f);
488  _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f);
489  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000);
490 
491  Packet4f neg_half = pmul(_x, p4f_minus_half);
492 
493  // select only the inverse sqrt of positive normal inputs (denormals are
494  // flushed to zero and cause infs as well).
495  Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min);
496  Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x));
497 
498  // Fill in NaNs and Infs for the negative/zero entries.
499  Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
500  Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
501  Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
502  _mm_and_ps(zero_mask, p4f_inf));
503 
504  // Do a single step of Newton's iteration.
505  x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
506 
507  // Insert NaNs and Infs in all the right places.
508  return _mm_or_ps(x, infs_and_nans);
509 }
510 
511 #else
512 
515  // Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation.
516  return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x));
517 }
518 
519 #endif
520 
523  // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
524  return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x));
525 }
526 
527 // Hyperbolic Tangent function.
528 template <>
532 }
533 
534 } // end namespace internal
535 
536 namespace numext {
537 
538 template<>
539 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
540 float sqrt(const float &x)
541 {
542  return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x))));
543 }
544 
545 template<>
546 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
547 double sqrt(const double &x)
548 {
549 #if EIGEN_COMP_GNUC_STRICT
550  // This works around a GCC bug generating poor code for _mm_sqrt_pd
551  // See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b
552  return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
553 #else
554  return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
555 #endif
556 }
557 
558 } // end namespace numex
559 
560 } // end namespace Eigen
561 
562 #endif // EIGEN_MATH_FUNCTIONS_SSE_H
static _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f)
#define EIGEN_ALWAYS_INLINE
Definition: Macros.h:507
__vector float Packet4f
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d psqrt< Packet2d >(const Packet2d &x)
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
EIGEN_DEVICE_FUNC const Scalar & x
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psin< Packet4f >(const Packet4f &_x)
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: LDLT.h:16
__vector int Packet4i
T generic_fast_tanh_float(const T &a_x)
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Definition: Macros.h:529
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
EIGEN_DEVICE_FUNC Packet pmin(const Packet &a, const Packet &b)
#define EIGEN_UNUSED
Definition: Macros.h:607
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f ptanh< Packet4f >(const Packet4f &x)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f plog< Packet4f >(const Packet4f &_x)
EIGEN_DEVICE_FUNC unpacket_traits< Packet >::type pfirst(const Packet &a)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pcos< Packet4f >(const Packet4f &_x)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f prsqrt< Packet4f >(const Packet4f &x)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d prsqrt< Packet2d >(const Packet2d &x)
TFSIMD_FORCE_INLINE const tfScalar & z() const
EIGEN_DEVICE_FUNC Packet pdiv(const Packet &a, const Packet &b)
EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f &a, const Packet4f &b, const Packet4f &c)
EIGEN_DEVICE_FUNC Packet psub(const Packet &a, const Packet &b)
EIGEN_STRONG_INLINE Packet2d pset1< Packet2d >(const double &from)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psqrt< Packet4f >(const Packet4f &x)
static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pexp< Packet4f >(const Packet4f &_x)
EIGEN_STRONG_INLINE Packet4f pset1< Packet4f >(const float &from)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d pexp< Packet2d >(const Packet2d &_x)
EIGEN_DEVICE_FUNC Packet pmul(const Packet &a, const Packet &b)
static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0)
EIGEN_DEVICE_FUNC Packet pmax(const Packet &a, const Packet &b)
EIGEN_DEVICE_FUNC Packet pand(const Packet &a, const Packet &b)
static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask,~0x7f800000)
const T & y
EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f &a)


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:24