|
const MatrixTypeNestedCleaned & | _expression () const |
|
Scalar | coeff (Index row, Index col) const |
|
Scalar & | coeffRef (Index row, Index col) |
|
Index | cols () const |
|
EigenvaluesReturnType | eigenvalues () const |
| Computes the eigenvalues of a matrix. More...
|
|
Index | innerStride () const |
|
const LDLT< PlainObject, UpLo > | ldlt () const |
|
const LLT< PlainObject, UpLo > | llt () const |
|
const MatrixTypeNestedCleaned & | nestedExpression () const |
|
MatrixTypeNestedCleaned & | nestedExpression () |
|
template<typename OtherDerived > |
SelfadjointProductMatrix< MatrixType, Mode, false, OtherDerived, 0, OtherDerived::IsVectorAtCompileTime > | operator* (const MatrixBase< OtherDerived > &rhs) const |
|
RealScalar | operatorNorm () const |
| Computes the L2 operator norm. More...
|
|
Index | outerStride () const |
|
template<typename DerivedU , typename DerivedV > |
SelfAdjointView< MatrixType, UpLo > & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, const Scalar &alpha) |
|
template<typename DerivedU > |
SelfAdjointView< MatrixType, UpLo > & | rankUpdate (const MatrixBase< DerivedU > &u, const Scalar &alpha) |
|
template<typename DerivedU , typename DerivedV > |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, const Scalar &alpha=Scalar(1)) |
|
template<typename DerivedU > |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1)) |
|
Index | rows () const |
|
| SelfAdjointView (MatrixType &matrix) |
|
Scalar | coeff (Index row, Index col) const |
|
Scalar & | coeffRef (Index row, Index col) |
|
Index | cols () const |
|
EIGEN_STRONG_INLINE void | copyCoeff (Index row, Index col, Other &other) |
|
const SelfAdjointView< MatrixType, UpLo > & | derived () const |
|
SelfAdjointView< MatrixType, UpLo > & | derived () |
|
void | evalTo (MatrixBase< DenseDerived > &other) const |
|
void | evalToLazy (MatrixBase< DenseDerived > &other) const |
|
Index | innerStride () const |
|
Scalar | operator() (Index row, Index col) const |
|
Scalar & | operator() (Index row, Index col) |
|
Index | outerStride () const |
|
Index | rows () const |
|
DenseMatrixType | toDenseMatrix () const |
|
| TriangularBase () |
|
template<typename Dest > |
void | addTo (Dest &dst) const |
|
template<typename Dest > |
void | applyThisOnTheLeft (Dest &dst) const |
|
template<typename Dest > |
void | applyThisOnTheRight (Dest &dst) const |
|
Index | cols () const |
|
Derived & | const_cast_derived () const |
|
const Derived & | const_derived () const |
|
Derived & | derived () |
|
const Derived & | derived () const |
|
template<typename Dest > |
void | evalTo (Dest &dst) const |
|
Index | rows () const |
|
Index | size () const |
|
template<typename Dest > |
void | subTo (Dest &dst) const |
|
template<typename MatrixType, unsigned int UpLo>
class Eigen::SelfAdjointView< MatrixType, UpLo >
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
- Parameters
-
MatrixType | the type of the dense matrix storing the coefficients |
TriangularPart | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
- See also
- class TriangularBase, MatrixBase::selfadjointView()
Definition at line 53 of file SelfAdjointView.h.
template<typename MatrixType , unsigned int UpLo>
Computes the L2 operator norm.
- Returns
- Operator norm of the matrix.
This function computes the L2 operator norm of a self-adjoint matrix. For a self-adjoint matrix, the operator norm is the largest eigenvalue.
The current implementation uses the eigenvalues of the matrix, as computed by eigenvalues(), to compute the operator norm of the matrix.
Example:
Output:
- See also
- eigenvalues(), MatrixBase::operatorNorm()
Definition at line 153 of file MatrixBaseEigenvalues.h.
template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU , typename DerivedV >
Perform a symmetric rank 2 update of the selfadjoint matrix *this
:
- Returns
- a reference to
*this
The vectors u and v
must be column vectors, however they can be a adjoint expression without any overhead. Only the meaningful triangular part of the matrix is updated, the rest is left unchanged.
- See also
- rankUpdate(const MatrixBase<DerivedU>&, Scalar)