10 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H 11 #define EIGEN_SUITESPARSEQRSUPPORT_H 15 template<
typename MatrixType>
class SPQR;
56 template<
typename _MatrixType>
60 typedef typename _MatrixType::Scalar
Scalar;
67 : m_ordering(SPQR_ORDERING_DEFAULT),
68 m_allow_tol(SPQR_DEFAULT_TOL),
69 m_tolerance (
NumTraits<Scalar>::epsilon())
71 cholmod_l_start(&m_cc);
74 SPQR(
const _MatrixType& matrix)
75 : m_ordering(SPQR_ORDERING_DEFAULT),
76 m_allow_tol(SPQR_DEFAULT_TOL),
77 m_tolerance (
NumTraits<Scalar>::epsilon())
79 cholmod_l_start(&m_cc);
86 cholmod_l_free_sparse(&m_H, &m_cc);
87 cholmod_l_free_sparse(&m_cR, &m_cc);
88 cholmod_l_free_dense(&m_HTau, &m_cc);
91 cholmod_l_finish(&m_cc);
95 MatrixType mat(matrix);
98 Index
col = matrix.cols();
99 m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance,
col, &
A,
100 &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
105 m_isInitialized =
false;
109 m_isInitialized =
true;
110 m_isRUpToDate =
false;
115 inline Index
rows()
const {
return m_H->nrow; }
120 inline Index
cols()
const {
return m_cR->ncol; }
126 template<
typename Rhs>
129 eigen_assert(m_isInitialized &&
" The QR factorization should be computed first, call compute()");
131 &&
"SPQR::solve(): invalid number of rows of the right hand side matrix B");
135 template<
typename Rhs,
typename Dest>
138 eigen_assert(m_isInitialized &&
" The QR factorization should be computed first, call compute()");
139 eigen_assert(b.cols()==1 &&
"This method is for vectors only");
143 y = matrixQ().transpose() * b;
145 Index rk = this->rank();
146 y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
147 y.bottomRows(cols()-rk).setZero();
149 dest.
topRows(cols()) = colsPermutation() * y.topRows(cols());
158 eigen_assert(m_isInitialized &&
" The QR factorization should be computed first, call compute()");
160 m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
161 m_isRUpToDate =
true;
173 eigen_assert(m_isInitialized &&
"Decomposition is not initialized.");
174 Index n = m_cR->ncol;
175 PermutationType colsPerm(n);
176 for(Index j = 0; j <n; j++) colsPerm.
indices()(j) = m_E[j];
186 eigen_assert(m_isInitialized &&
"Decomposition is not initialized.");
187 return m_cc.SPQR_istat[4];
205 eigen_assert(m_isInitialized &&
"Decomposition is not initialized.");
220 mutable cholmod_sparse *
m_H;
228 template <
typename SPQRType,
typename Derived>
231 typedef typename SPQRType::Scalar
Scalar;
232 typedef typename SPQRType::Index
Index;
234 SPQR_QProduct(
const SPQRType& spqr,
const Derived& other,
bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
236 inline Index
rows()
const {
return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
237 inline Index
cols()
const {
return m_other.cols(); }
239 template<
typename ResType>
244 int method = m_transpose ? SPQR_QTX : SPQR_QX;
245 cholmod_common *cc = m_spqr.cholmodCommon();
247 x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
249 cholmod_l_free_dense(&x_cd, cc);
256 template<
typename SPQRType>
260 template<
typename Derived>
277 template<
typename SPQRType>
280 template<
typename Derived>
290 template<
typename _MatrixType,
typename Rhs>
297 template<typename Dest>
void evalTo(Dest& dst)
const 299 dec()._solve(
rhs(),dst);
SPQR_QProduct< SPQRType, Derived > operator*(const MatrixBase< Derived > &other)
cholmod_common * cholmodCommon() const
SparseMatrix< Scalar, ColMajor, Index > MatrixType
PermutationMatrix< Dynamic, Dynamic > PermutationType
SPQRMatrixQTransposeReturnType< SPQRType > transpose() const
void _solve(const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
RowsBlockXpr topRows(Index n)
SPQR(const _MatrixType &matrix)
SPQRMatrixQReturnType(const SPQRType &spqr)
iterative scaling algorithm to equilibrate rows and column norms in matrices
SPQR_QProduct< SPQRType, Derived > operator*(const MatrixBase< Derived > &other)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
_MatrixType::Scalar Scalar
SPQRType::MatrixType ReturnType
const internal::solve_retval< SPQR, Rhs > solve(const MatrixBase< Rhs > &B) const
void setPivotThreshold(const RealScalar &tol)
Set the tolerance tol to treat columns with 2-norm < =tol as zero.
SPQRType::MatrixType ReturnType
cholmod_sparse viewAsCholmod(SparseMatrix< _Scalar, _Options, _Index > &mat)
PermutationType colsPermutation() const
Get the permutation that was applied to columns of A.
Derived::PlainObject ReturnType
ComputationInfo info() const
Reports whether previous computation was successful.
SPQR_QProduct(const SPQRType &spqr, const Derived &other, bool transpose)
void compute(const _MatrixType &matrix)
void rhs(const real_t *x, real_t *f)
const MatrixType matrixR() const
void setSPQROrdering(int ord)
Set the fill-reducing ordering method to be used.
const IndicesType & indices() const
SPQRMatrixQReturnType< SPQR > matrixQ() const
Get an expression of the matrix Q.
static ConstMapType Map(const Scalar *data)
SPQRMatrixQTransposeReturnType(const SPQRType &spqr)
Sparse QR factorization based on SuiteSparseQR library.
void evalTo(ResType &res) const
#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType, Rhs)
SPQRMatrixQTransposeReturnType< SPQRType > adjoint() const
Base class for all dense matrices, vectors, and expressions.
_MatrixType::RealScalar RealScalar