Functions
covMaterniso3.h File Reference
#include "Eigen/Dense"
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

Eigen::MatrixXf covMaterniso3 (const Eigen::MatrixXf &x, const Eigen::MatrixXf &z, double sf2, double ell, bool diag=false)
 Matern3 kernel. cov = sf2*(1+sqrt(3)/ell*d)*exp(-sqrt(3)/ell*d), in which d is the Euclidean distance of two points.
Eigen::MatrixXf dist (const Eigen::MatrixXf &x, const Eigen::MatrixXf &z)
 Euclidean distance between two vectors. dist = [d(x1, z1) d(x1, z2) ... d(x1, zn) ...... d(xm, z1) d(xm, z2) ... d(xm, zn)].

Function Documentation

Eigen::MatrixXf covMaterniso3 ( const Eigen::MatrixXf &  x,
const Eigen::MatrixXf &  z,
double  sf2,
double  ell,
bool  diag = false 
)

Matern3 kernel. cov = sf2*(1+sqrt(3)/ell*d)*exp(-sqrt(3)/ell*d), in which d is the Euclidean distance of two points.

Parameters:
xm by d(imension) input vector.
zn by d(imension) input vector.
sf2prior variance.
elllengthscale.
diagif diag is true, only the diagonal of covariance matrix is returned.
Returns:
covariance matrix (or its diagonal).
Eigen::MatrixXf dist ( const Eigen::MatrixXf &  x,
const Eigen::MatrixXf &  z 
)

Euclidean distance between two vectors. dist = [d(x1, z1) d(x1, z2) ... d(x1, zn) ...... d(xm, z1) d(xm, z2) ... d(xm, zn)].

Parameters:
x1 by m vector.
z1 by n vector.
Returns:
m by n distance matrix.


turtlebot_exploration_3d
Author(s): Bona , Shawn
autogenerated on Thu Jun 6 2019 21:00:37