obstacle_layer.cpp
Go to the documentation of this file.
00001 /*********************************************************************
00002  *
00003  * Software License Agreement (BSD License)
00004  *
00005  *  Copyright (c) 2008, 2013, Willow Garage, Inc.
00006  *  All rights reserved.
00007  *
00008  *  Redistribution and use in source and binary forms, with or without
00009  *  modification, are permitted provided that the following conditions
00010  *  are met:
00011  *
00012  *   * Redistributions of source code must retain the above copyright
00013  *     notice, this list of conditions and the following disclaimer.
00014  *   * Redistributions in binary form must reproduce the above
00015  *     copyright notice, this list of conditions and the following
00016  *     disclaimer in the documentation and/or other materials provided
00017  *     with the distribution.
00018  *   * Neither the name of Willow Garage, Inc. nor the names of its
00019  *     contributors may be used to endorse or promote products derived
00020  *     from this software without specific prior written permission.
00021  *
00022  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00023  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00024  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00025  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00026  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00027  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00028  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00029  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00030  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00032  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00033  *  POSSIBILITY OF SUCH DAMAGE.
00034  *
00035  * Author: Eitan Marder-Eppstein
00036  *         David V. Lu!!
00037  *********************************************************************/
00038 #include <costmap_2d/obstacle_layer.h>
00039 #include <costmap_2d/costmap_math.h>
00040 #include <pluginlib/class_list_macros.h>
00041 
00042 PLUGINLIB_EXPORT_CLASS(costmap_2d::ObstacleLayer, costmap_2d::Layer)
00043 
00044 using costmap_2d::NO_INFORMATION;
00045 using costmap_2d::LETHAL_OBSTACLE;
00046 using costmap_2d::FREE_SPACE;
00047 
00048 using costmap_2d::ObservationBuffer;
00049 using costmap_2d::Observation;
00050 
00051 namespace costmap_2d
00052 {
00053 
00054 void ObstacleLayer::onInitialize()
00055 {
00056   ros::NodeHandle nh("~/" + name_), g_nh;
00057   rolling_window_ = layered_costmap_->isRolling();
00058 
00059   bool track_unknown_space;
00060   nh.param("track_unknown_space", track_unknown_space, layered_costmap_->isTrackingUnknown());
00061   if (track_unknown_space)
00062     default_value_ = NO_INFORMATION;
00063   else
00064     default_value_ = FREE_SPACE;
00065 
00066   ObstacleLayer::matchSize();
00067   current_ = true;
00068 
00069   global_frame_ = layered_costmap_->getGlobalFrameID();
00070   double transform_tolerance;
00071   nh.param("transform_tolerance", transform_tolerance, 0.2);
00072 
00073   std::string topics_string;
00074   // get the topics that we'll subscribe to from the parameter server
00075   nh.param("observation_sources", topics_string, std::string(""));
00076   ROS_INFO("    Subscribed to Topics: %s", topics_string.c_str());
00077 
00078   // get our tf prefix
00079   ros::NodeHandle prefix_nh;
00080   const std::string tf_prefix = tf::getPrefixParam(prefix_nh);
00081 
00082   // now we need to split the topics based on whitespace which we can use a stringstream for
00083   std::stringstream ss(topics_string);
00084 
00085   std::string source;
00086   while (ss >> source)
00087   {
00088     ros::NodeHandle source_node(nh, source);
00089 
00090     // get the parameters for the specific topic
00091     double observation_keep_time, expected_update_rate, min_obstacle_height, max_obstacle_height;
00092     std::string topic, sensor_frame, data_type;
00093     bool inf_is_valid, clearing, marking;
00094 
00095     source_node.param("topic", topic, source);
00096     source_node.param("sensor_frame", sensor_frame, std::string(""));
00097     source_node.param("observation_persistence", observation_keep_time, 0.0);
00098     source_node.param("expected_update_rate", expected_update_rate, 0.0);
00099     source_node.param("data_type", data_type, std::string("PointCloud"));
00100     source_node.param("min_obstacle_height", min_obstacle_height, 0.0);
00101     source_node.param("max_obstacle_height", max_obstacle_height, 2.0);
00102     source_node.param("inf_is_valid", inf_is_valid, false);
00103     source_node.param("clearing", clearing, false);
00104     source_node.param("marking", marking, true);
00105 
00106     if (!sensor_frame.empty())
00107     {
00108       sensor_frame = tf::resolve(tf_prefix, sensor_frame);
00109     }
00110 
00111     if (!(data_type == "PointCloud2" || data_type == "PointCloud" || data_type == "LaserScan"))
00112     {
00113       ROS_FATAL("Only topics that use point clouds or laser scans are currently supported");
00114       throw std::runtime_error("Only topics that use point clouds or laser scans are currently supported");
00115     }
00116 
00117     std::string raytrace_range_param_name, obstacle_range_param_name;
00118 
00119     // get the obstacle range for the sensor
00120     double obstacle_range = 2.5;
00121     if (source_node.searchParam("obstacle_range", obstacle_range_param_name))
00122     {
00123       source_node.getParam(obstacle_range_param_name, obstacle_range);
00124     }
00125 
00126     // get the raytrace range for the sensor
00127     double raytrace_range = 3.0;
00128     if (source_node.searchParam("raytrace_range", raytrace_range_param_name))
00129     {
00130       source_node.getParam(raytrace_range_param_name, raytrace_range);
00131     }
00132 
00133     ROS_DEBUG("Creating an observation buffer for source %s, topic %s, frame %s", source.c_str(), topic.c_str(),
00134               sensor_frame.c_str());
00135 
00136     // create an observation buffer
00137     observation_buffers_.push_back(
00138         boost::shared_ptr < ObservationBuffer
00139             > (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height,
00140                                      max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_,
00141                                      sensor_frame, transform_tolerance)));
00142 
00143     // check if we'll add this buffer to our marking observation buffers
00144     if (marking)
00145       marking_buffers_.push_back(observation_buffers_.back());
00146 
00147     // check if we'll also add this buffer to our clearing observation buffers
00148     if (clearing)
00149       clearing_buffers_.push_back(observation_buffers_.back());
00150 
00151     ROS_DEBUG(
00152         "Created an observation buffer for source %s, topic %s, global frame: %s, "
00153         "expected update rate: %.2f, observation persistence: %.2f",
00154         source.c_str(), topic.c_str(), global_frame_.c_str(), expected_update_rate, observation_keep_time);
00155 
00156     // create a callback for the topic
00157     if (data_type == "LaserScan")
00158     {
00159       boost::shared_ptr < message_filters::Subscriber<sensor_msgs::LaserScan>
00160           > sub(new message_filters::Subscriber<sensor_msgs::LaserScan>(g_nh, topic, 50));
00161 
00162       boost::shared_ptr < tf::MessageFilter<sensor_msgs::LaserScan>
00163           > filter(new tf::MessageFilter<sensor_msgs::LaserScan>(*sub, *tf_, global_frame_, 50));
00164 
00165       if (inf_is_valid)
00166       {
00167         filter->registerCallback(
00168             boost::bind(&ObstacleLayer::laserScanValidInfCallback, this, _1, observation_buffers_.back()));
00169       }
00170       else
00171       {
00172         filter->registerCallback(
00173             boost::bind(&ObstacleLayer::laserScanCallback, this, _1, observation_buffers_.back()));
00174       }
00175 
00176       observation_subscribers_.push_back(sub);
00177       observation_notifiers_.push_back(filter);
00178 
00179       observation_notifiers_.back()->setTolerance(ros::Duration(0.05));
00180     }
00181     else if (data_type == "PointCloud")
00182     {
00183       boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud>
00184           > sub(new message_filters::Subscriber<sensor_msgs::PointCloud>(g_nh, topic, 50));
00185 
00186       if (inf_is_valid)
00187       {
00188        ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
00189       }
00190 
00191       boost::shared_ptr < tf::MessageFilter<sensor_msgs::PointCloud>
00192           > filter(new tf::MessageFilter<sensor_msgs::PointCloud>(*sub, *tf_, global_frame_, 50));
00193       filter->registerCallback(
00194           boost::bind(&ObstacleLayer::pointCloudCallback, this, _1, observation_buffers_.back()));
00195 
00196       observation_subscribers_.push_back(sub);
00197       observation_notifiers_.push_back(filter);
00198     }
00199     else
00200     {
00201       boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud2>
00202           > sub(new message_filters::Subscriber<sensor_msgs::PointCloud2>(g_nh, topic, 50));
00203 
00204       if (inf_is_valid)
00205       {
00206        ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
00207       }
00208 
00209       boost::shared_ptr < tf::MessageFilter<sensor_msgs::PointCloud2>
00210           > filter(new tf::MessageFilter<sensor_msgs::PointCloud2>(*sub, *tf_, global_frame_, 50));
00211       filter->registerCallback(
00212           boost::bind(&ObstacleLayer::pointCloud2Callback, this, _1, observation_buffers_.back()));
00213 
00214       observation_subscribers_.push_back(sub);
00215       observation_notifiers_.push_back(filter);
00216     }
00217 
00218     if (sensor_frame != "")
00219     {
00220       std::vector < std::string > target_frames;
00221       target_frames.push_back(global_frame_);
00222       target_frames.push_back(sensor_frame);
00223       observation_notifiers_.back()->setTargetFrames(target_frames);
00224     }
00225   }
00226 
00227   dsrv_ = NULL;
00228   setupDynamicReconfigure(nh);
00229 }
00230 
00231 void ObstacleLayer::setupDynamicReconfigure(ros::NodeHandle& nh)
00232 {
00233   dsrv_ = new dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>(nh);
00234   dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>::CallbackType cb = boost::bind(
00235       &ObstacleLayer::reconfigureCB, this, _1, _2);
00236   dsrv_->setCallback(cb);
00237 }
00238 
00239 ObstacleLayer::~ObstacleLayer()
00240 {
00241     if (dsrv_)
00242         delete dsrv_;
00243 }
00244 void ObstacleLayer::reconfigureCB(costmap_2d::ObstaclePluginConfig &config, uint32_t level)
00245 {
00246   enabled_ = config.enabled;
00247   footprint_clearing_enabled_ = config.footprint_clearing_enabled;
00248   max_obstacle_height_ = config.max_obstacle_height;
00249   combination_method_ = config.combination_method;
00250 }
00251 
00252 void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message,
00253                                       const boost::shared_ptr<ObservationBuffer>& buffer)
00254 {
00255   // project the laser into a point cloud
00256   sensor_msgs::PointCloud2 cloud;
00257   cloud.header = message->header;
00258 
00259   // project the scan into a point cloud
00260   try
00261   {
00262     projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_);
00263   }
00264   catch (tf::TransformException &ex)
00265   {
00266     ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(),
00267              ex.what());
00268     projector_.projectLaser(*message, cloud);
00269   }
00270 
00271   // buffer the point cloud
00272   buffer->lock();
00273   buffer->bufferCloud(cloud);
00274   buffer->unlock();
00275 }
00276 
00277 void ObstacleLayer::laserScanValidInfCallback(const sensor_msgs::LaserScanConstPtr& raw_message,
00278                                               const boost::shared_ptr<ObservationBuffer>& buffer)
00279 {
00280   // Filter positive infinities ("Inf"s) to max_range.
00281   float epsilon = 0.0001;  // a tenth of a millimeter
00282   sensor_msgs::LaserScan message = *raw_message;
00283   for (size_t i = 0; i < message.ranges.size(); i++)
00284   {
00285     float range = message.ranges[ i ];
00286     if (!std::isfinite(range) && range > 0)
00287     {
00288       message.ranges[ i ] = message.range_max - epsilon;
00289     }
00290   }
00291 
00292   // project the laser into a point cloud
00293   sensor_msgs::PointCloud2 cloud;
00294   cloud.header = message.header;
00295 
00296   // project the scan into a point cloud
00297   try
00298   {
00299     projector_.transformLaserScanToPointCloud(message.header.frame_id, message, cloud, *tf_);
00300   }
00301   catch (tf::TransformException &ex)
00302   {
00303     ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s",
00304              global_frame_.c_str(), ex.what());
00305     projector_.projectLaser(message, cloud);
00306   }
00307 
00308   // buffer the point cloud
00309   buffer->lock();
00310   buffer->bufferCloud(cloud);
00311   buffer->unlock();
00312 }
00313 
00314 void ObstacleLayer::pointCloudCallback(const sensor_msgs::PointCloudConstPtr& message,
00315                                                const boost::shared_ptr<ObservationBuffer>& buffer)
00316 {
00317   sensor_msgs::PointCloud2 cloud2;
00318 
00319   if (!sensor_msgs::convertPointCloudToPointCloud2(*message, cloud2))
00320   {
00321     ROS_ERROR("Failed to convert a PointCloud to a PointCloud2, dropping message");
00322     return;
00323   }
00324 
00325   // buffer the point cloud
00326   buffer->lock();
00327   buffer->bufferCloud(cloud2);
00328   buffer->unlock();
00329 }
00330 
00331 void ObstacleLayer::pointCloud2Callback(const sensor_msgs::PointCloud2ConstPtr& message,
00332                                                 const boost::shared_ptr<ObservationBuffer>& buffer)
00333 {
00334   // buffer the point cloud
00335   buffer->lock();
00336   buffer->bufferCloud(*message);
00337   buffer->unlock();
00338 }
00339 
00340 void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,
00341                                           double* min_y, double* max_x, double* max_y)
00342 {
00343   if (rolling_window_)
00344     updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
00345   if (!enabled_)
00346     return;
00347   useExtraBounds(min_x, min_y, max_x, max_y);
00348 
00349   bool current = true;
00350   std::vector<Observation> observations, clearing_observations;
00351 
00352   // get the marking observations
00353   current = current && getMarkingObservations(observations);
00354 
00355   // get the clearing observations
00356   current = current && getClearingObservations(clearing_observations);
00357 
00358   // update the global current status
00359   current_ = current;
00360 
00361   // raytrace freespace
00362   for (unsigned int i = 0; i < clearing_observations.size(); ++i)
00363   {
00364     raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
00365   }
00366 
00367   // place the new obstacles into a priority queue... each with a priority of zero to begin with
00368   for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
00369   {
00370     const Observation& obs = *it;
00371 
00372     const pcl::PointCloud<pcl::PointXYZ>& cloud = *(obs.cloud_);
00373 
00374     double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
00375 
00376     for (unsigned int i = 0; i < cloud.points.size(); ++i)
00377     {
00378       double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z;
00379 
00380       // if the obstacle is too high or too far away from the robot we won't add it
00381       if (pz > max_obstacle_height_)
00382       {
00383         ROS_DEBUG("The point is too high");
00384         continue;
00385       }
00386 
00387       // compute the squared distance from the hitpoint to the pointcloud's origin
00388       double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y)
00389           + (pz - obs.origin_.z) * (pz - obs.origin_.z);
00390 
00391       // if the point is far enough away... we won't consider it
00392       if (sq_dist >= sq_obstacle_range)
00393       {
00394         ROS_DEBUG("The point is too far away");
00395         continue;
00396       }
00397 
00398       // now we need to compute the map coordinates for the observation
00399       unsigned int mx, my;
00400       if (!worldToMap(px, py, mx, my))
00401       {
00402         ROS_DEBUG("Computing map coords failed");
00403         continue;
00404       }
00405 
00406       unsigned int index = getIndex(mx, my);
00407       costmap_[index] = LETHAL_OBSTACLE;
00408       touch(px, py, min_x, min_y, max_x, max_y);
00409     }
00410   }
00411 
00412   updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
00413 }
00414 
00415 void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,
00416                                     double* max_x, double* max_y)
00417 {
00418     if (!footprint_clearing_enabled_) return;
00419     transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_);
00420 
00421     for (unsigned int i = 0; i < transformed_footprint_.size(); i++)
00422     {
00423       touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y);
00424     }
00425 }
00426 
00427 void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
00428 {
00429   if (!enabled_)
00430     return;
00431 
00432   if (footprint_clearing_enabled_)
00433   {
00434     setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE);
00435   }
00436 
00437   switch (combination_method_)
00438   {
00439     case 0:  // Overwrite
00440       updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j);
00441       break;
00442     case 1:  // Maximum
00443       updateWithMax(master_grid, min_i, min_j, max_i, max_j);
00444       break;
00445     default:  // Nothing
00446       break;
00447   }
00448 }
00449 
00450 void ObstacleLayer::addStaticObservation(costmap_2d::Observation& obs, bool marking, bool clearing)
00451 {
00452   if (marking)
00453     static_marking_observations_.push_back(obs);
00454   if (clearing)
00455     static_clearing_observations_.push_back(obs);
00456 }
00457 
00458 void ObstacleLayer::clearStaticObservations(bool marking, bool clearing)
00459 {
00460   if (marking)
00461     static_marking_observations_.clear();
00462   if (clearing)
00463     static_clearing_observations_.clear();
00464 }
00465 
00466 bool ObstacleLayer::getMarkingObservations(std::vector<Observation>& marking_observations) const
00467 {
00468   bool current = true;
00469   // get the marking observations
00470   for (unsigned int i = 0; i < marking_buffers_.size(); ++i)
00471   {
00472     marking_buffers_[i]->lock();
00473     marking_buffers_[i]->getObservations(marking_observations);
00474     current = marking_buffers_[i]->isCurrent() && current;
00475     marking_buffers_[i]->unlock();
00476   }
00477   marking_observations.insert(marking_observations.end(),
00478                               static_marking_observations_.begin(), static_marking_observations_.end());
00479   return current;
00480 }
00481 
00482 bool ObstacleLayer::getClearingObservations(std::vector<Observation>& clearing_observations) const
00483 {
00484   bool current = true;
00485   // get the clearing observations
00486   for (unsigned int i = 0; i < clearing_buffers_.size(); ++i)
00487   {
00488     clearing_buffers_[i]->lock();
00489     clearing_buffers_[i]->getObservations(clearing_observations);
00490     current = clearing_buffers_[i]->isCurrent() && current;
00491     clearing_buffers_[i]->unlock();
00492   }
00493   clearing_observations.insert(clearing_observations.end(),
00494                               static_clearing_observations_.begin(), static_clearing_observations_.end());
00495   return current;
00496 }
00497 
00498 void ObstacleLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y,
00499                                               double* max_x, double* max_y)
00500 {
00501   double ox = clearing_observation.origin_.x;
00502   double oy = clearing_observation.origin_.y;
00503   pcl::PointCloud < pcl::PointXYZ > cloud = *(clearing_observation.cloud_);
00504 
00505   // get the map coordinates of the origin of the sensor
00506   unsigned int x0, y0;
00507   if (!worldToMap(ox, oy, x0, y0))
00508   {
00509     ROS_WARN_THROTTLE(
00510         1.0, "The origin for the sensor at (%.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.",
00511         ox, oy);
00512     return;
00513   }
00514 
00515   // we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later
00516   double origin_x = origin_x_, origin_y = origin_y_;
00517   double map_end_x = origin_x + size_x_ * resolution_;
00518   double map_end_y = origin_y + size_y_ * resolution_;
00519 
00520 
00521   touch(ox, oy, min_x, min_y, max_x, max_y);
00522 
00523   // for each point in the cloud, we want to trace a line from the origin and clear obstacles along it
00524   for (unsigned int i = 0; i < cloud.points.size(); ++i)
00525   {
00526     double wx = cloud.points[i].x;
00527     double wy = cloud.points[i].y;
00528 
00529     // now we also need to make sure that the enpoint we're raytracing
00530     // to isn't off the costmap and scale if necessary
00531     double a = wx - ox;
00532     double b = wy - oy;
00533 
00534     // the minimum value to raytrace from is the origin
00535     if (wx < origin_x)
00536     {
00537       double t = (origin_x - ox) / a;
00538       wx = origin_x;
00539       wy = oy + b * t;
00540     }
00541     if (wy < origin_y)
00542     {
00543       double t = (origin_y - oy) / b;
00544       wx = ox + a * t;
00545       wy = origin_y;
00546     }
00547 
00548     // the maximum value to raytrace to is the end of the map
00549     if (wx > map_end_x)
00550     {
00551       double t = (map_end_x - ox) / a;
00552       wx = map_end_x - .001;
00553       wy = oy + b * t;
00554     }
00555     if (wy > map_end_y)
00556     {
00557       double t = (map_end_y - oy) / b;
00558       wx = ox + a * t;
00559       wy = map_end_y - .001;
00560     }
00561 
00562     // now that the vector is scaled correctly... we'll get the map coordinates of its endpoint
00563     unsigned int x1, y1;
00564 
00565     // check for legality just in case
00566     if (!worldToMap(wx, wy, x1, y1))
00567       continue;
00568 
00569     unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_);
00570     MarkCell marker(costmap_, FREE_SPACE);
00571     // and finally... we can execute our trace to clear obstacles along that line
00572     raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range);
00573 
00574     updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
00575   }
00576 }
00577 
00578 void ObstacleLayer::activate()
00579 {
00580   // if we're stopped we need to re-subscribe to topics
00581   for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
00582   {
00583     if (observation_subscribers_[i] != NULL)
00584       observation_subscribers_[i]->subscribe();
00585   }
00586 
00587   for (unsigned int i = 0; i < observation_buffers_.size(); ++i)
00588   {
00589     if (observation_buffers_[i])
00590       observation_buffers_[i]->resetLastUpdated();
00591   }
00592 }
00593 void ObstacleLayer::deactivate()
00594 {
00595   for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
00596   {
00597     if (observation_subscribers_[i] != NULL)
00598       observation_subscribers_[i]->unsubscribe();
00599   }
00600 }
00601 
00602 void ObstacleLayer::updateRaytraceBounds(double ox, double oy, double wx, double wy, double range,
00603                                          double* min_x, double* min_y, double* max_x, double* max_y)
00604 {
00605   double dx = wx-ox, dy = wy-oy;
00606   double full_distance = hypot(dx, dy);
00607   double scale = std::min(1.0, range / full_distance);
00608   double ex = ox + dx * scale, ey = oy + dy * scale;
00609   touch(ex, ey, min_x, min_y, max_x, max_y);
00610 }
00611 
00612 void ObstacleLayer::reset()
00613 {
00614     deactivate();
00615     resetMaps();
00616     current_ = true;
00617     activate();
00618 }
00619 
00620 }  // namespace costmap_2d


costmap_2d
Author(s): Eitan Marder-Eppstein, David V. Lu!!, Dave Hershberger, contradict@gmail.com
autogenerated on Sun Mar 3 2019 03:46:15