Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00042 #define PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00043
00044 #include <pcl/sample_consensus/rmsac.h>
00045
00047 template <typename PointT> bool
00048 pcl::RandomizedMEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00049 {
00050
00051 if (threshold_ == std::numeric_limits<double>::max())
00052 {
00053 PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] No threshold set!\n");
00054 return (false);
00055 }
00056
00057 iterations_ = 0;
00058 double d_best_penalty = std::numeric_limits<double>::max();
00059 double k = 1.0;
00060
00061 std::vector<int> best_model;
00062 std::vector<int> selection;
00063 Eigen::VectorXf model_coefficients;
00064 std::vector<double> distances;
00065 std::set<int> indices_subset;
00066
00067 int n_inliers_count = 0;
00068 unsigned skipped_count = 0;
00069
00070 const unsigned max_skip = max_iterations_ * 10;
00071
00072
00073 size_t fraction_nr_points = pcl_lrint (static_cast<double>(sac_model_->getIndices ()->size ()) * fraction_nr_pretest_ / 100.0);
00074
00075
00076 while (iterations_ < k && skipped_count < max_skip)
00077 {
00078
00079 sac_model_->getSamples (iterations_, selection);
00080
00081 if (selection.empty ()) break;
00082
00083
00084 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00085 {
00086
00087 ++ skipped_count;
00088 continue;
00089 }
00090
00091
00092
00093 this->getRandomSamples (sac_model_->getIndices (), fraction_nr_points, indices_subset);
00094
00095 if (!sac_model_->doSamplesVerifyModel (indices_subset, model_coefficients, threshold_))
00096 {
00097
00098 if (k != 1.0)
00099 {
00100 ++iterations_;
00101 continue;
00102 }
00103 }
00104
00105 double d_cur_penalty = 0;
00106
00107 sac_model_->getDistancesToModel (model_coefficients, distances);
00108
00109 if (distances.empty () && k > 1.0)
00110 continue;
00111
00112 for (size_t i = 0; i < distances.size (); ++i)
00113 d_cur_penalty += (std::min) (distances[i], threshold_);
00114
00115
00116 if (d_cur_penalty < d_best_penalty)
00117 {
00118 d_best_penalty = d_cur_penalty;
00119
00120
00121 model_ = selection;
00122 model_coefficients_ = model_coefficients;
00123
00124 n_inliers_count = 0;
00125
00126 for (size_t i = 0; i < distances.size (); ++i)
00127 if (distances[i] <= threshold_)
00128 n_inliers_count++;
00129
00130
00131 double w = static_cast<double> (n_inliers_count) / static_cast<double>(sac_model_->getIndices ()->size ());
00132 double p_no_outliers = 1 - pow (w, static_cast<double> (selection.size ()));
00133 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00134 p_no_outliers = (std::min) (1 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00135 k = log (1 - probability_) / log (p_no_outliers);
00136 }
00137
00138 ++iterations_;
00139 if (debug_verbosity_level > 1)
00140 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast<int> (ceil (k)), d_best_penalty);
00141 if (iterations_ > max_iterations_)
00142 {
00143 if (debug_verbosity_level > 0)
00144 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n");
00145 break;
00146 }
00147 }
00148
00149 if (model_.empty ())
00150 {
00151 if (debug_verbosity_level > 0)
00152 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Unable to find a solution!\n");
00153 return (false);
00154 }
00155
00156
00157 sac_model_->getDistancesToModel (model_coefficients_, distances);
00158 std::vector<int> &indices = *sac_model_->getIndices ();
00159 if (distances.size () != indices.size ())
00160 {
00161 PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00162 return (false);
00163 }
00164
00165 inliers_.resize (distances.size ());
00166
00167 n_inliers_count = 0;
00168 for (size_t i = 0; i < distances.size (); ++i)
00169 if (distances[i] <= threshold_)
00170 inliers_[n_inliers_count++] = indices[i];
00171
00172
00173 inliers_.resize (n_inliers_count);
00174
00175 if (debug_verbosity_level > 0)
00176 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00177
00178 return (true);
00179 }
00180
00181 #define PCL_INSTANTIATE_RandomizedMEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::RandomizedMEstimatorSampleConsensus<T>;
00182
00183 #endif // PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00184