Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_
00042 #define PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_
00043
00044 #include <pcl/sample_consensus/ransac.h>
00045
00047 template <typename PointT> bool
00048 pcl::RandomSampleConsensus<PointT>::computeModel (int)
00049 {
00050
00051 if (threshold_ == std::numeric_limits<double>::max())
00052 {
00053 PCL_ERROR ("[pcl::RandomSampleConsensus::computeModel] No threshold set!\n");
00054 return (false);
00055 }
00056
00057 iterations_ = 0;
00058 int n_best_inliers_count = -INT_MAX;
00059 double k = 1.0;
00060
00061 std::vector<int> selection;
00062 Eigen::VectorXf model_coefficients;
00063
00064 double log_probability = log (1.0 - probability_);
00065 double one_over_indices = 1.0 / static_cast<double> (sac_model_->getIndices ()->size ());
00066
00067 int n_inliers_count = 0;
00068 unsigned skipped_count = 0;
00069
00070 const unsigned max_skip = max_iterations_ * 10;
00071
00072
00073 while (iterations_ < k && skipped_count < max_skip)
00074 {
00075
00076 sac_model_->getSamples (iterations_, selection);
00077
00078 if (selection.empty ())
00079 {
00080 PCL_ERROR ("[pcl::RandomSampleConsensus::computeModel] No samples could be selected!\n");
00081 break;
00082 }
00083
00084
00085 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00086 {
00087
00088 ++skipped_count;
00089 continue;
00090 }
00091
00092
00093
00094
00095
00096
00097 n_inliers_count = sac_model_->countWithinDistance (model_coefficients, threshold_);
00098
00099
00100 if (n_inliers_count > n_best_inliers_count)
00101 {
00102 n_best_inliers_count = n_inliers_count;
00103
00104
00105 model_ = selection;
00106 model_coefficients_ = model_coefficients;
00107
00108
00109 double w = static_cast<double> (n_best_inliers_count) * one_over_indices;
00110 double p_no_outliers = 1.0 - pow (w, static_cast<double> (selection.size ()));
00111 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00112 p_no_outliers = (std::min) (1.0 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00113 k = log_probability / log (p_no_outliers);
00114 }
00115
00116 ++iterations_;
00117 PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Trial %d out of %f: %d inliers (best is: %d so far).\n", iterations_, k, n_inliers_count, n_best_inliers_count);
00118 if (iterations_ > max_iterations_)
00119 {
00120 PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] RANSAC reached the maximum number of trials.\n");
00121 break;
00122 }
00123 }
00124
00125 PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_best_inliers_count);
00126
00127 if (model_.empty ())
00128 {
00129 inliers_.clear ();
00130 return (false);
00131 }
00132
00133
00134 sac_model_->selectWithinDistance (model_coefficients_, threshold_, inliers_);
00135 return (true);
00136 }
00137
00138 #define PCL_INSTANTIATE_RandomSampleConsensus(T) template class PCL_EXPORTS pcl::RandomSampleConsensus<T>;
00139
00140 #endif // PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_
00141