Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00042 #define PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00043
00044 #include <pcl/sample_consensus/lmeds.h>
00045
00047 template <typename PointT> bool
00048 pcl::LeastMedianSquares<PointT>::computeModel (int debug_verbosity_level)
00049 {
00050
00051 if (threshold_ == std::numeric_limits<double>::max())
00052 {
00053 PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] No threshold set!\n");
00054 return (false);
00055 }
00056
00057 iterations_ = 0;
00058 double d_best_penalty = std::numeric_limits<double>::max();
00059
00060 std::vector<int> best_model;
00061 std::vector<int> selection;
00062 Eigen::VectorXf model_coefficients;
00063 std::vector<double> distances;
00064
00065 int n_inliers_count = 0;
00066
00067 unsigned skipped_count = 0;
00068
00069 const unsigned max_skip = max_iterations_ * 10;
00070
00071
00072 while (iterations_ < max_iterations_ && skipped_count < max_skip)
00073 {
00074
00075 sac_model_->getSamples (iterations_, selection);
00076
00077 if (selection.empty ()) break;
00078
00079
00080 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00081 {
00082
00083 ++skipped_count;
00084 continue;
00085 }
00086
00087 double d_cur_penalty = 0;
00088
00089
00090
00091 sac_model_->getDistancesToModel (model_coefficients, distances);
00092
00093
00094 if (distances.empty ())
00095 {
00096
00097 ++skipped_count;
00098 continue;
00099 }
00100
00101 std::sort (distances.begin (), distances.end ());
00102
00103 size_t mid = sac_model_->getIndices ()->size () / 2;
00104 if (mid >= distances.size ())
00105 {
00106
00107 ++skipped_count;
00108 continue;
00109 }
00110
00111
00112 if (sac_model_->getIndices ()->size () % 2 == 0)
00113 d_cur_penalty = (sqrt (distances[mid-1]) + sqrt (distances[mid])) / 2;
00114 else
00115 d_cur_penalty = sqrt (distances[mid]);
00116
00117
00118 if (d_cur_penalty < d_best_penalty)
00119 {
00120 d_best_penalty = d_cur_penalty;
00121
00122
00123 model_ = selection;
00124 model_coefficients_ = model_coefficients;
00125 }
00126
00127 ++iterations_;
00128 if (debug_verbosity_level > 1)
00129 PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, max_iterations_, d_best_penalty);
00130 }
00131
00132 if (model_.empty ())
00133 {
00134 if (debug_verbosity_level > 0)
00135 PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Unable to find a solution!\n");
00136 return (false);
00137 }
00138
00139
00140
00141
00142
00143
00144
00145
00146 sac_model_->getDistancesToModel (model_coefficients_, distances);
00147
00148 if (distances.empty ())
00149 {
00150 PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] The model found failed to verify against the given constraints!\n");
00151 return (false);
00152 }
00153
00154 std::vector<int> &indices = *sac_model_->getIndices ();
00155
00156 if (distances.size () != indices.size ())
00157 {
00158 PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00159 return (false);
00160 }
00161
00162 inliers_.resize (distances.size ());
00163
00164 n_inliers_count = 0;
00165 for (size_t i = 0; i < distances.size (); ++i)
00166 if (distances[i] <= threshold_)
00167 inliers_[n_inliers_count++] = indices[i];
00168
00169
00170 inliers_.resize (n_inliers_count);
00171
00172 if (debug_verbosity_level > 0)
00173 PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00174
00175 return (true);
00176 }
00177
00178 #define PCL_INSTANTIATE_LeastMedianSquares(T) template class PCL_EXPORTS pcl::LeastMedianSquares<T>;
00179
00180 #endif // PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00181