00001 // Copyright 2007, Google Inc. 00002 // All rights reserved. 00003 // 00004 // Redistribution and use in source and binary forms, with or without 00005 // modification, are permitted provided that the following conditions are 00006 // met: 00007 // 00008 // * Redistributions of source code must retain the above copyright 00009 // notice, this list of conditions and the following disclaimer. 00010 // * Redistributions in binary form must reproduce the above 00011 // copyright notice, this list of conditions and the following disclaimer 00012 // in the documentation and/or other materials provided with the 00013 // distribution. 00014 // * Neither the name of Google Inc. nor the names of its 00015 // contributors may be used to endorse or promote products derived from 00016 // this software without specific prior written permission. 00017 // 00018 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00019 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00020 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00021 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 00022 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00023 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 00024 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 00025 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 00026 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00027 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00028 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00029 // 00030 // Author: wan@google.com (Zhanyong Wan) 00031 00032 // Google Test - The Google C++ Testing Framework 00033 // 00034 // This file implements a universal value printer that can print a 00035 // value of any type T: 00036 // 00037 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); 00038 // 00039 // A user can teach this function how to print a class type T by 00040 // defining either operator<<() or PrintTo() in the namespace that 00041 // defines T. More specifically, the FIRST defined function in the 00042 // following list will be used (assuming T is defined in namespace 00043 // foo): 00044 // 00045 // 1. foo::PrintTo(const T&, ostream*) 00046 // 2. operator<<(ostream&, const T&) defined in either foo or the 00047 // global namespace. 00048 // 00049 // If none of the above is defined, it will print the debug string of 00050 // the value if it is a protocol buffer, or print the raw bytes in the 00051 // value otherwise. 00052 // 00053 // To aid debugging: when T is a reference type, the address of the 00054 // value is also printed; when T is a (const) char pointer, both the 00055 // pointer value and the NUL-terminated string it points to are 00056 // printed. 00057 // 00058 // We also provide some convenient wrappers: 00059 // 00060 // // Prints a value to a string. For a (const or not) char 00061 // // pointer, the NUL-terminated string (but not the pointer) is 00062 // // printed. 00063 // std::string ::testing::PrintToString(const T& value); 00064 // 00065 // // Prints a value tersely: for a reference type, the referenced 00066 // // value (but not the address) is printed; for a (const or not) char 00067 // // pointer, the NUL-terminated string (but not the pointer) is 00068 // // printed. 00069 // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); 00070 // 00071 // // Prints value using the type inferred by the compiler. The difference 00072 // // from UniversalTersePrint() is that this function prints both the 00073 // // pointer and the NUL-terminated string for a (const or not) char pointer. 00074 // void ::testing::internal::UniversalPrint(const T& value, ostream*); 00075 // 00076 // // Prints the fields of a tuple tersely to a string vector, one 00077 // // element for each field. Tuple support must be enabled in 00078 // // gtest-port.h. 00079 // std::vector<string> UniversalTersePrintTupleFieldsToStrings( 00080 // const Tuple& value); 00081 // 00082 // Known limitation: 00083 // 00084 // The print primitives print the elements of an STL-style container 00085 // using the compiler-inferred type of *iter where iter is a 00086 // const_iterator of the container. When const_iterator is an input 00087 // iterator but not a forward iterator, this inferred type may not 00088 // match value_type, and the print output may be incorrect. In 00089 // practice, this is rarely a problem as for most containers 00090 // const_iterator is a forward iterator. We'll fix this if there's an 00091 // actual need for it. Note that this fix cannot rely on value_type 00092 // being defined as many user-defined container types don't have 00093 // value_type. 00094 00095 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 00096 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 00097 00098 #include <ostream> // NOLINT 00099 #include <sstream> 00100 #include <string> 00101 #include <utility> 00102 #include <vector> 00103 #include "gtest/internal/gtest-port.h" 00104 #include "gtest/internal/gtest-internal.h" 00105 00106 namespace testing { 00107 00108 // Definitions in the 'internal' and 'internal2' name spaces are 00109 // subject to change without notice. DO NOT USE THEM IN USER CODE! 00110 namespace internal2 { 00111 00112 // Prints the given number of bytes in the given object to the given 00113 // ostream. 00114 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, 00115 size_t count, 00116 ::std::ostream* os); 00117 00118 // For selecting which printer to use when a given type has neither << 00119 // nor PrintTo(). 00120 enum TypeKind { 00121 kProtobuf, // a protobuf type 00122 kConvertibleToInteger, // a type implicitly convertible to BiggestInt 00123 // (e.g. a named or unnamed enum type) 00124 kOtherType // anything else 00125 }; 00126 00127 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called 00128 // by the universal printer to print a value of type T when neither 00129 // operator<< nor PrintTo() is defined for T, where kTypeKind is the 00130 // "kind" of T as defined by enum TypeKind. 00131 template <typename T, TypeKind kTypeKind> 00132 class TypeWithoutFormatter { 00133 public: 00134 // This default version is called when kTypeKind is kOtherType. 00135 static void PrintValue(const T& value, ::std::ostream* os) { 00136 PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), 00137 sizeof(value), os); 00138 } 00139 }; 00140 00141 // We print a protobuf using its ShortDebugString() when the string 00142 // doesn't exceed this many characters; otherwise we print it using 00143 // DebugString() for better readability. 00144 const size_t kProtobufOneLinerMaxLength = 50; 00145 00146 template <typename T> 00147 class TypeWithoutFormatter<T, kProtobuf> { 00148 public: 00149 static void PrintValue(const T& value, ::std::ostream* os) { 00150 const ::testing::internal::string short_str = value.ShortDebugString(); 00151 const ::testing::internal::string pretty_str = 00152 short_str.length() <= kProtobufOneLinerMaxLength ? 00153 short_str : ("\n" + value.DebugString()); 00154 *os << ("<" + pretty_str + ">"); 00155 } 00156 }; 00157 00158 template <typename T> 00159 class TypeWithoutFormatter<T, kConvertibleToInteger> { 00160 public: 00161 // Since T has no << operator or PrintTo() but can be implicitly 00162 // converted to BiggestInt, we print it as a BiggestInt. 00163 // 00164 // Most likely T is an enum type (either named or unnamed), in which 00165 // case printing it as an integer is the desired behavior. In case 00166 // T is not an enum, printing it as an integer is the best we can do 00167 // given that it has no user-defined printer. 00168 static void PrintValue(const T& value, ::std::ostream* os) { 00169 const internal::BiggestInt kBigInt = value; 00170 *os << kBigInt; 00171 } 00172 }; 00173 00174 // Prints the given value to the given ostream. If the value is a 00175 // protocol message, its debug string is printed; if it's an enum or 00176 // of a type implicitly convertible to BiggestInt, it's printed as an 00177 // integer; otherwise the bytes in the value are printed. This is 00178 // what UniversalPrinter<T>::Print() does when it knows nothing about 00179 // type T and T has neither << operator nor PrintTo(). 00180 // 00181 // A user can override this behavior for a class type Foo by defining 00182 // a << operator in the namespace where Foo is defined. 00183 // 00184 // We put this operator in namespace 'internal2' instead of 'internal' 00185 // to simplify the implementation, as much code in 'internal' needs to 00186 // use << in STL, which would conflict with our own << were it defined 00187 // in 'internal'. 00188 // 00189 // Note that this operator<< takes a generic std::basic_ostream<Char, 00190 // CharTraits> type instead of the more restricted std::ostream. If 00191 // we define it to take an std::ostream instead, we'll get an 00192 // "ambiguous overloads" compiler error when trying to print a type 00193 // Foo that supports streaming to std::basic_ostream<Char, 00194 // CharTraits>, as the compiler cannot tell whether 00195 // operator<<(std::ostream&, const T&) or 00196 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more 00197 // specific. 00198 template <typename Char, typename CharTraits, typename T> 00199 ::std::basic_ostream<Char, CharTraits>& operator<<( 00200 ::std::basic_ostream<Char, CharTraits>& os, const T& x) { 00201 TypeWithoutFormatter<T, 00202 (internal::IsAProtocolMessage<T>::value ? kProtobuf : 00203 internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? 00204 kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); 00205 return os; 00206 } 00207 00208 } // namespace internal2 00209 } // namespace testing 00210 00211 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up 00212 // magic needed for implementing UniversalPrinter won't work. 00213 namespace testing_internal { 00214 00215 // Used to print a value that is not an STL-style container when the 00216 // user doesn't define PrintTo() for it. 00217 template <typename T> 00218 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { 00219 // With the following statement, during unqualified name lookup, 00220 // testing::internal2::operator<< appears as if it was declared in 00221 // the nearest enclosing namespace that contains both 00222 // ::testing_internal and ::testing::internal2, i.e. the global 00223 // namespace. For more details, refer to the C++ Standard section 00224 // 7.3.4-1 [namespace.udir]. This allows us to fall back onto 00225 // testing::internal2::operator<< in case T doesn't come with a << 00226 // operator. 00227 // 00228 // We cannot write 'using ::testing::internal2::operator<<;', which 00229 // gcc 3.3 fails to compile due to a compiler bug. 00230 using namespace ::testing::internal2; // NOLINT 00231 00232 // Assuming T is defined in namespace foo, in the next statement, 00233 // the compiler will consider all of: 00234 // 00235 // 1. foo::operator<< (thanks to Koenig look-up), 00236 // 2. ::operator<< (as the current namespace is enclosed in ::), 00237 // 3. testing::internal2::operator<< (thanks to the using statement above). 00238 // 00239 // The operator<< whose type matches T best will be picked. 00240 // 00241 // We deliberately allow #2 to be a candidate, as sometimes it's 00242 // impossible to define #1 (e.g. when foo is ::std, defining 00243 // anything in it is undefined behavior unless you are a compiler 00244 // vendor.). 00245 *os << value; 00246 } 00247 00248 } // namespace testing_internal 00249 00250 namespace testing { 00251 namespace internal { 00252 00253 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given 00254 // value to the given ostream. The caller must ensure that 00255 // 'ostream_ptr' is not NULL, or the behavior is undefined. 00256 // 00257 // We define UniversalPrinter as a class template (as opposed to a 00258 // function template), as we need to partially specialize it for 00259 // reference types, which cannot be done with function templates. 00260 template <typename T> 00261 class UniversalPrinter; 00262 00263 template <typename T> 00264 void UniversalPrint(const T& value, ::std::ostream* os); 00265 00266 // Used to print an STL-style container when the user doesn't define 00267 // a PrintTo() for it. 00268 template <typename C> 00269 void DefaultPrintTo(IsContainer /* dummy */, 00270 false_type /* is not a pointer */, 00271 const C& container, ::std::ostream* os) { 00272 const size_t kMaxCount = 32; // The maximum number of elements to print. 00273 *os << '{'; 00274 size_t count = 0; 00275 for (typename C::const_iterator it = container.begin(); 00276 it != container.end(); ++it, ++count) { 00277 if (count > 0) { 00278 *os << ','; 00279 if (count == kMaxCount) { // Enough has been printed. 00280 *os << " ..."; 00281 break; 00282 } 00283 } 00284 *os << ' '; 00285 // We cannot call PrintTo(*it, os) here as PrintTo() doesn't 00286 // handle *it being a native array. 00287 internal::UniversalPrint(*it, os); 00288 } 00289 00290 if (count > 0) { 00291 *os << ' '; 00292 } 00293 *os << '}'; 00294 } 00295 00296 // Used to print a pointer that is neither a char pointer nor a member 00297 // pointer, when the user doesn't define PrintTo() for it. (A member 00298 // variable pointer or member function pointer doesn't really point to 00299 // a location in the address space. Their representation is 00300 // implementation-defined. Therefore they will be printed as raw 00301 // bytes.) 00302 template <typename T> 00303 void DefaultPrintTo(IsNotContainer /* dummy */, 00304 true_type /* is a pointer */, 00305 T* p, ::std::ostream* os) { 00306 if (p == NULL) { 00307 *os << "NULL"; 00308 } else { 00309 // C++ doesn't allow casting from a function pointer to any object 00310 // pointer. 00311 // 00312 // IsTrue() silences warnings: "Condition is always true", 00313 // "unreachable code". 00314 if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { 00315 // T is not a function type. We just call << to print p, 00316 // relying on ADL to pick up user-defined << for their pointer 00317 // types, if any. 00318 *os << p; 00319 } else { 00320 // T is a function type, so '*os << p' doesn't do what we want 00321 // (it just prints p as bool). We want to print p as a const 00322 // void*. However, we cannot cast it to const void* directly, 00323 // even using reinterpret_cast, as earlier versions of gcc 00324 // (e.g. 3.4.5) cannot compile the cast when p is a function 00325 // pointer. Casting to UInt64 first solves the problem. 00326 *os << reinterpret_cast<const void*>( 00327 reinterpret_cast<internal::UInt64>(p)); 00328 } 00329 } 00330 } 00331 00332 // Used to print a non-container, non-pointer value when the user 00333 // doesn't define PrintTo() for it. 00334 template <typename T> 00335 void DefaultPrintTo(IsNotContainer /* dummy */, 00336 false_type /* is not a pointer */, 00337 const T& value, ::std::ostream* os) { 00338 ::testing_internal::DefaultPrintNonContainerTo(value, os); 00339 } 00340 00341 // Prints the given value using the << operator if it has one; 00342 // otherwise prints the bytes in it. This is what 00343 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized 00344 // or overloaded for type T. 00345 // 00346 // A user can override this behavior for a class type Foo by defining 00347 // an overload of PrintTo() in the namespace where Foo is defined. We 00348 // give the user this option as sometimes defining a << operator for 00349 // Foo is not desirable (e.g. the coding style may prevent doing it, 00350 // or there is already a << operator but it doesn't do what the user 00351 // wants). 00352 template <typename T> 00353 void PrintTo(const T& value, ::std::ostream* os) { 00354 // DefaultPrintTo() is overloaded. The type of its first two 00355 // arguments determine which version will be picked. If T is an 00356 // STL-style container, the version for container will be called; if 00357 // T is a pointer, the pointer version will be called; otherwise the 00358 // generic version will be called. 00359 // 00360 // Note that we check for container types here, prior to we check 00361 // for protocol message types in our operator<<. The rationale is: 00362 // 00363 // For protocol messages, we want to give people a chance to 00364 // override Google Mock's format by defining a PrintTo() or 00365 // operator<<. For STL containers, other formats can be 00366 // incompatible with Google Mock's format for the container 00367 // elements; therefore we check for container types here to ensure 00368 // that our format is used. 00369 // 00370 // The second argument of DefaultPrintTo() is needed to bypass a bug 00371 // in Symbian's C++ compiler that prevents it from picking the right 00372 // overload between: 00373 // 00374 // PrintTo(const T& x, ...); 00375 // PrintTo(T* x, ...); 00376 DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); 00377 } 00378 00379 // The following list of PrintTo() overloads tells 00380 // UniversalPrinter<T>::Print() how to print standard types (built-in 00381 // types, strings, plain arrays, and pointers). 00382 00383 // Overloads for various char types. 00384 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); 00385 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); 00386 inline void PrintTo(char c, ::std::ostream* os) { 00387 // When printing a plain char, we always treat it as unsigned. This 00388 // way, the output won't be affected by whether the compiler thinks 00389 // char is signed or not. 00390 PrintTo(static_cast<unsigned char>(c), os); 00391 } 00392 00393 // Overloads for other simple built-in types. 00394 inline void PrintTo(bool x, ::std::ostream* os) { 00395 *os << (x ? "true" : "false"); 00396 } 00397 00398 // Overload for wchar_t type. 00399 // Prints a wchar_t as a symbol if it is printable or as its internal 00400 // code otherwise and also as its decimal code (except for L'\0'). 00401 // The L'\0' char is printed as "L'\\0'". The decimal code is printed 00402 // as signed integer when wchar_t is implemented by the compiler 00403 // as a signed type and is printed as an unsigned integer when wchar_t 00404 // is implemented as an unsigned type. 00405 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); 00406 00407 // Overloads for C strings. 00408 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); 00409 inline void PrintTo(char* s, ::std::ostream* os) { 00410 PrintTo(ImplicitCast_<const char*>(s), os); 00411 } 00412 00413 // signed/unsigned char is often used for representing binary data, so 00414 // we print pointers to it as void* to be safe. 00415 inline void PrintTo(const signed char* s, ::std::ostream* os) { 00416 PrintTo(ImplicitCast_<const void*>(s), os); 00417 } 00418 inline void PrintTo(signed char* s, ::std::ostream* os) { 00419 PrintTo(ImplicitCast_<const void*>(s), os); 00420 } 00421 inline void PrintTo(const unsigned char* s, ::std::ostream* os) { 00422 PrintTo(ImplicitCast_<const void*>(s), os); 00423 } 00424 inline void PrintTo(unsigned char* s, ::std::ostream* os) { 00425 PrintTo(ImplicitCast_<const void*>(s), os); 00426 } 00427 00428 // MSVC can be configured to define wchar_t as a typedef of unsigned 00429 // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native 00430 // type. When wchar_t is a typedef, defining an overload for const 00431 // wchar_t* would cause unsigned short* be printed as a wide string, 00432 // possibly causing invalid memory accesses. 00433 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) 00434 // Overloads for wide C strings 00435 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); 00436 inline void PrintTo(wchar_t* s, ::std::ostream* os) { 00437 PrintTo(ImplicitCast_<const wchar_t*>(s), os); 00438 } 00439 #endif 00440 00441 // Overload for C arrays. Multi-dimensional arrays are printed 00442 // properly. 00443 00444 // Prints the given number of elements in an array, without printing 00445 // the curly braces. 00446 template <typename T> 00447 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { 00448 UniversalPrint(a[0], os); 00449 for (size_t i = 1; i != count; i++) { 00450 *os << ", "; 00451 UniversalPrint(a[i], os); 00452 } 00453 } 00454 00455 // Overloads for ::string and ::std::string. 00456 #if GTEST_HAS_GLOBAL_STRING 00457 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); 00458 inline void PrintTo(const ::string& s, ::std::ostream* os) { 00459 PrintStringTo(s, os); 00460 } 00461 #endif // GTEST_HAS_GLOBAL_STRING 00462 00463 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); 00464 inline void PrintTo(const ::std::string& s, ::std::ostream* os) { 00465 PrintStringTo(s, os); 00466 } 00467 00468 // Overloads for ::wstring and ::std::wstring. 00469 #if GTEST_HAS_GLOBAL_WSTRING 00470 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); 00471 inline void PrintTo(const ::wstring& s, ::std::ostream* os) { 00472 PrintWideStringTo(s, os); 00473 } 00474 #endif // GTEST_HAS_GLOBAL_WSTRING 00475 00476 #if GTEST_HAS_STD_WSTRING 00477 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); 00478 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { 00479 PrintWideStringTo(s, os); 00480 } 00481 #endif // GTEST_HAS_STD_WSTRING 00482 00483 #if GTEST_HAS_TR1_TUPLE 00484 // Overload for ::std::tr1::tuple. Needed for printing function arguments, 00485 // which are packed as tuples. 00486 00487 // Helper function for printing a tuple. T must be instantiated with 00488 // a tuple type. 00489 template <typename T> 00490 void PrintTupleTo(const T& t, ::std::ostream* os); 00491 00492 // Overloaded PrintTo() for tuples of various arities. We support 00493 // tuples of up-to 10 fields. The following implementation works 00494 // regardless of whether tr1::tuple is implemented using the 00495 // non-standard variadic template feature or not. 00496 00497 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { 00498 PrintTupleTo(t, os); 00499 } 00500 00501 template <typename T1> 00502 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { 00503 PrintTupleTo(t, os); 00504 } 00505 00506 template <typename T1, typename T2> 00507 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { 00508 PrintTupleTo(t, os); 00509 } 00510 00511 template <typename T1, typename T2, typename T3> 00512 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { 00513 PrintTupleTo(t, os); 00514 } 00515 00516 template <typename T1, typename T2, typename T3, typename T4> 00517 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { 00518 PrintTupleTo(t, os); 00519 } 00520 00521 template <typename T1, typename T2, typename T3, typename T4, typename T5> 00522 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, 00523 ::std::ostream* os) { 00524 PrintTupleTo(t, os); 00525 } 00526 00527 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00528 typename T6> 00529 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, 00530 ::std::ostream* os) { 00531 PrintTupleTo(t, os); 00532 } 00533 00534 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00535 typename T6, typename T7> 00536 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, 00537 ::std::ostream* os) { 00538 PrintTupleTo(t, os); 00539 } 00540 00541 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00542 typename T6, typename T7, typename T8> 00543 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, 00544 ::std::ostream* os) { 00545 PrintTupleTo(t, os); 00546 } 00547 00548 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00549 typename T6, typename T7, typename T8, typename T9> 00550 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, 00551 ::std::ostream* os) { 00552 PrintTupleTo(t, os); 00553 } 00554 00555 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00556 typename T6, typename T7, typename T8, typename T9, typename T10> 00557 void PrintTo( 00558 const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, 00559 ::std::ostream* os) { 00560 PrintTupleTo(t, os); 00561 } 00562 #endif // GTEST_HAS_TR1_TUPLE 00563 00564 // Overload for std::pair. 00565 template <typename T1, typename T2> 00566 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { 00567 *os << '('; 00568 // We cannot use UniversalPrint(value.first, os) here, as T1 may be 00569 // a reference type. The same for printing value.second. 00570 UniversalPrinter<T1>::Print(value.first, os); 00571 *os << ", "; 00572 UniversalPrinter<T2>::Print(value.second, os); 00573 *os << ')'; 00574 } 00575 00576 // Implements printing a non-reference type T by letting the compiler 00577 // pick the right overload of PrintTo() for T. 00578 template <typename T> 00579 class UniversalPrinter { 00580 public: 00581 // MSVC warns about adding const to a function type, so we want to 00582 // disable the warning. 00583 #ifdef _MSC_VER 00584 # pragma warning(push) // Saves the current warning state. 00585 # pragma warning(disable:4180) // Temporarily disables warning 4180. 00586 #endif // _MSC_VER 00587 00588 // Note: we deliberately don't call this PrintTo(), as that name 00589 // conflicts with ::testing::internal::PrintTo in the body of the 00590 // function. 00591 static void Print(const T& value, ::std::ostream* os) { 00592 // By default, ::testing::internal::PrintTo() is used for printing 00593 // the value. 00594 // 00595 // Thanks to Koenig look-up, if T is a class and has its own 00596 // PrintTo() function defined in its namespace, that function will 00597 // be visible here. Since it is more specific than the generic ones 00598 // in ::testing::internal, it will be picked by the compiler in the 00599 // following statement - exactly what we want. 00600 PrintTo(value, os); 00601 } 00602 00603 #ifdef _MSC_VER 00604 # pragma warning(pop) // Restores the warning state. 00605 #endif // _MSC_VER 00606 }; 00607 00608 // UniversalPrintArray(begin, len, os) prints an array of 'len' 00609 // elements, starting at address 'begin'. 00610 template <typename T> 00611 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { 00612 if (len == 0) { 00613 *os << "{}"; 00614 } else { 00615 *os << "{ "; 00616 const size_t kThreshold = 18; 00617 const size_t kChunkSize = 8; 00618 // If the array has more than kThreshold elements, we'll have to 00619 // omit some details by printing only the first and the last 00620 // kChunkSize elements. 00621 // TODO(wan@google.com): let the user control the threshold using a flag. 00622 if (len <= kThreshold) { 00623 PrintRawArrayTo(begin, len, os); 00624 } else { 00625 PrintRawArrayTo(begin, kChunkSize, os); 00626 *os << ", ..., "; 00627 PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); 00628 } 00629 *os << " }"; 00630 } 00631 } 00632 // This overload prints a (const) char array compactly. 00633 GTEST_API_ void UniversalPrintArray(const char* begin, 00634 size_t len, 00635 ::std::ostream* os); 00636 00637 // Implements printing an array type T[N]. 00638 template <typename T, size_t N> 00639 class UniversalPrinter<T[N]> { 00640 public: 00641 // Prints the given array, omitting some elements when there are too 00642 // many. 00643 static void Print(const T (&a)[N], ::std::ostream* os) { 00644 UniversalPrintArray(a, N, os); 00645 } 00646 }; 00647 00648 // Implements printing a reference type T&. 00649 template <typename T> 00650 class UniversalPrinter<T&> { 00651 public: 00652 // MSVC warns about adding const to a function type, so we want to 00653 // disable the warning. 00654 #ifdef _MSC_VER 00655 # pragma warning(push) // Saves the current warning state. 00656 # pragma warning(disable:4180) // Temporarily disables warning 4180. 00657 #endif // _MSC_VER 00658 00659 static void Print(const T& value, ::std::ostream* os) { 00660 // Prints the address of the value. We use reinterpret_cast here 00661 // as static_cast doesn't compile when T is a function type. 00662 *os << "@" << reinterpret_cast<const void*>(&value) << " "; 00663 00664 // Then prints the value itself. 00665 UniversalPrint(value, os); 00666 } 00667 00668 #ifdef _MSC_VER 00669 # pragma warning(pop) // Restores the warning state. 00670 #endif // _MSC_VER 00671 }; 00672 00673 // Prints a value tersely: for a reference type, the referenced value 00674 // (but not the address) is printed; for a (const) char pointer, the 00675 // NUL-terminated string (but not the pointer) is printed. 00676 template <typename T> 00677 void UniversalTersePrint(const T& value, ::std::ostream* os) { 00678 UniversalPrint(value, os); 00679 } 00680 inline void UniversalTersePrint(const char* str, ::std::ostream* os) { 00681 if (str == NULL) { 00682 *os << "NULL"; 00683 } else { 00684 UniversalPrint(string(str), os); 00685 } 00686 } 00687 inline void UniversalTersePrint(char* str, ::std::ostream* os) { 00688 UniversalTersePrint(static_cast<const char*>(str), os); 00689 } 00690 00691 // Prints a value using the type inferred by the compiler. The 00692 // difference between this and UniversalTersePrint() is that for a 00693 // (const) char pointer, this prints both the pointer and the 00694 // NUL-terminated string. 00695 template <typename T> 00696 void UniversalPrint(const T& value, ::std::ostream* os) { 00697 UniversalPrinter<T>::Print(value, os); 00698 } 00699 00700 #if GTEST_HAS_TR1_TUPLE 00701 typedef ::std::vector<string> Strings; 00702 00703 // This helper template allows PrintTo() for tuples and 00704 // UniversalTersePrintTupleFieldsToStrings() to be defined by 00705 // induction on the number of tuple fields. The idea is that 00706 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N 00707 // fields in tuple t, and can be defined in terms of 00708 // TuplePrefixPrinter<N - 1>. 00709 00710 // The inductive case. 00711 template <size_t N> 00712 struct TuplePrefixPrinter { 00713 // Prints the first N fields of a tuple. 00714 template <typename Tuple> 00715 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 00716 TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); 00717 *os << ", "; 00718 UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> 00719 ::Print(::std::tr1::get<N - 1>(t), os); 00720 } 00721 00722 // Tersely prints the first N fields of a tuple to a string vector, 00723 // one element for each field. 00724 template <typename Tuple> 00725 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 00726 TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); 00727 ::std::stringstream ss; 00728 UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); 00729 strings->push_back(ss.str()); 00730 } 00731 }; 00732 00733 // Base cases. 00734 template <> 00735 struct TuplePrefixPrinter<0> { 00736 template <typename Tuple> 00737 static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} 00738 00739 template <typename Tuple> 00740 static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} 00741 }; 00742 // We have to specialize the entire TuplePrefixPrinter<> class 00743 // template here, even though the definition of 00744 // TersePrintPrefixToStrings() is the same as the generic version, as 00745 // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't 00746 // support specializing a method template of a class template. 00747 template <> 00748 struct TuplePrefixPrinter<1> { 00749 template <typename Tuple> 00750 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 00751 UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: 00752 Print(::std::tr1::get<0>(t), os); 00753 } 00754 00755 template <typename Tuple> 00756 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 00757 ::std::stringstream ss; 00758 UniversalTersePrint(::std::tr1::get<0>(t), &ss); 00759 strings->push_back(ss.str()); 00760 } 00761 }; 00762 00763 // Helper function for printing a tuple. T must be instantiated with 00764 // a tuple type. 00765 template <typename T> 00766 void PrintTupleTo(const T& t, ::std::ostream* os) { 00767 *os << "("; 00768 TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: 00769 PrintPrefixTo(t, os); 00770 *os << ")"; 00771 } 00772 00773 // Prints the fields of a tuple tersely to a string vector, one 00774 // element for each field. See the comment before 00775 // UniversalTersePrint() for how we define "tersely". 00776 template <typename Tuple> 00777 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { 00778 Strings result; 00779 TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: 00780 TersePrintPrefixToStrings(value, &result); 00781 return result; 00782 } 00783 #endif // GTEST_HAS_TR1_TUPLE 00784 00785 } // namespace internal 00786 00787 template <typename T> 00788 ::std::string PrintToString(const T& value) { 00789 ::std::stringstream ss; 00790 internal::UniversalTersePrint(value, &ss); 00791 return ss.str(); 00792 } 00793 00794 } // namespace testing 00795 00796 #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_