Surface normal estimation on dense data using a least-squares estimation based on a first-order Taylor approximation. More...
#include <linear_least_squares_normal.h>

Public Types | |
| typedef boost::shared_ptr < const LinearLeastSquaresNormalEstimation < PointInT, PointOutT > > | ConstPtr |
| typedef Feature< PointInT, PointOutT >::PointCloudIn | PointCloudIn |
| typedef Feature< PointInT, PointOutT >::PointCloudOut | PointCloudOut |
| typedef boost::shared_ptr < LinearLeastSquaresNormalEstimation < PointInT, PointOutT > > | Ptr |
Public Member Functions | |
| void | computePointNormal (const int pos_x, const int pos_y, PointOutT &normal) |
| Computes the normal at the specified position. | |
| LinearLeastSquaresNormalEstimation () | |
| Constructor. | |
| void | setDepthDependentSmoothing (bool use_depth_dependent_smoothing) |
| Set whether to use depth depending smoothing or not. | |
| virtual void | setInputCloud (const typename PointCloudIn::ConstPtr &cloud) |
| Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method) | |
| void | setMaxDepthChangeFactor (float max_depth_change_factor) |
| The depth change threshold for computing object borders. | |
| void | setNormalSmoothingSize (float normal_smoothing_size) |
| Set the normal smoothing size. | |
| virtual | ~LinearLeastSquaresNormalEstimation () |
| Destructor. | |
Protected Member Functions | |
| void | computeFeature (PointCloudOut &output) |
| Computes the normal for the complete cloud. | |
Private Attributes | |
| float | max_depth_change_factor_ |
| Threshold for detecting depth discontinuities. | |
| float | normal_smoothing_size_ |
| bool | use_depth_dependent_smoothing_ |
| Smooth data based on depth (true/false). | |
Surface normal estimation on dense data using a least-squares estimation based on a first-order Taylor approximation.
Definition at line 52 of file linear_least_squares_normal.h.
| typedef boost::shared_ptr<const LinearLeastSquaresNormalEstimation<PointInT, PointOutT> > pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::ConstPtr |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 56 of file linear_least_squares_normal.h.
| typedef Feature<PointInT, PointOutT>::PointCloudIn pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::PointCloudIn |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 57 of file linear_least_squares_normal.h.
| typedef Feature<PointInT, PointOutT>::PointCloudOut pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::PointCloudOut |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 58 of file linear_least_squares_normal.h.
| typedef boost::shared_ptr<LinearLeastSquaresNormalEstimation<PointInT, PointOutT> > pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::Ptr |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 55 of file linear_least_squares_normal.h.
| pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::LinearLeastSquaresNormalEstimation | ( | ) | [inline] |
Constructor.
Definition at line 65 of file linear_least_squares_normal.h.
| pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::~LinearLeastSquaresNormalEstimation | ( | ) | [virtual] |
Destructor.
Definition at line 47 of file linear_least_squares_normal.hpp.
| void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::computeFeature | ( | PointCloudOut & | output | ) | [protected, virtual] |
Computes the normal for the complete cloud.
| [out] | output | the resultant normals |
Implements pcl::Feature< PointInT, PointOutT >.
Definition at line 155 of file linear_least_squares_normal.hpp.
| void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::computePointNormal | ( | const int | pos_x, |
| const int | pos_y, | ||
| PointOutT & | normal | ||
| ) |
Computes the normal at the specified position.
| [in] | pos_x | x position (pixel) |
| [in] | pos_y | y position (pixel) |
| [out] | normal | the output estimated normal |
Definition at line 53 of file linear_least_squares_normal.hpp.
| void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::setDepthDependentSmoothing | ( | bool | use_depth_dependent_smoothing | ) | [inline] |
Set whether to use depth depending smoothing or not.
| [in] | use_depth_dependent_smoothing | decides whether the smoothing is depth dependent |
Definition at line 100 of file linear_least_squares_normal.h.
| virtual void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::setInputCloud | ( | const typename PointCloudIn::ConstPtr & | cloud | ) | [inline, virtual] |
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
| [in] | cloud | the const boost shared pointer to a PointCloud message |
Definition at line 119 of file linear_least_squares_normal.h.
| void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::setMaxDepthChangeFactor | ( | float | max_depth_change_factor | ) | [inline] |
The depth change threshold for computing object borders.
| [in] | max_depth_change_factor | the depth change threshold for computing object borders based on depth changes |
Definition at line 110 of file linear_least_squares_normal.h.
| void pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::setNormalSmoothingSize | ( | float | normal_smoothing_size | ) | [inline] |
Set the normal smoothing size.
| [in] | normal_smoothing_size | factor which influences the size of the area used to smooth normals (depth dependent if useDepthDependentSmoothing is true) |
Definition at line 91 of file linear_least_squares_normal.h.
float pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::max_depth_change_factor_ [private] |
Threshold for detecting depth discontinuities.
Definition at line 140 of file linear_least_squares_normal.h.
float pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::normal_smoothing_size_ [private] |
Definition at line 143 of file linear_least_squares_normal.h.
bool pcl::LinearLeastSquaresNormalEstimation< PointInT, PointOutT >::use_depth_dependent_smoothing_ [private] |
Smooth data based on depth (true/false).
the threshold used to detect depth discontinuities
Definition at line 137 of file linear_least_squares_normal.h.