00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00032 #include <acado/utils/acado_utils.hpp> 00033 #include <acado/user_interaction/user_interaction.hpp> 00034 #include <acado/symbolic_expression/symbolic_expression.hpp> 00035 #include <acado/function/function.hpp> 00036 00037 using namespace std; 00038 00039 USING_NAMESPACE_ACADO 00040 00041 /* >>> start tutorial code >>> */ 00042 int main() 00043 { 00044 // DEFINE VALRIABLES: 00045 // --------------------------- 00046 DifferentialState x; 00047 IntermediateState y; 00048 IntermediateState z; 00049 00050 Function f; 00051 00052 // DEFINE A TEST FUNCTION: 00053 // ----------------------- 00054 y = x * x; 00055 00056 f << cos(x); 00057 f << sin(x); 00058 f << forwardDerivative(sin(x), x); 00059 f << forwardDerivative(cos(x), x); 00060 f << forwardDerivative(x * x, x); 00061 f << forwardDerivative(y, x); 00062 f << forwardDerivative(y + x * y, x); 00063 f << x + forwardDerivative(x + y * y, x); 00064 f << forwardDerivative(y * y + 1.0 / y, x); 00065 f << forwardDerivative(sqrt(x), x); 00066 f << forwardDerivative(log(x), x); 00067 00068 f << laplace(x * y, x); 00069 00070 // DifferentialState z(2); 00071 // 00072 // f << forwardDerivative(sin(z), z); 00073 // f << backwardDerivative(z(0) * z(0) + z(1) * z(1) * 3.0, z); 00074 00075 f << backwardDerivative(cos(y) + sin(y), x); 00076 00077 ofstream stream( "symbolic_differentiation1_output.txt" ); 00078 stream << f; 00079 stream.close(); 00080 00081 // // TEST THE FUNCTION f: 00082 // // -------------------- 00083 // double xx[3] = { 1.0, 1.0, 1.0 }; 00084 // double *result = new double[f.getDim()]; 00085 // 00086 // // EVALUATE f AT THE POINT (tt,xx): 00087 // // --------------------------------- 00088 // f.evaluate(0.0, xx, result, MEDIUM); 00089 // 00090 // delete[] result; 00091 00092 return 0; 00093 } 00094 /* <<< end tutorial code <<< */ 00095