00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado/utils/acado_utils.hpp> 00036 #include <acado/matrix_vector/matrix_vector.hpp> 00037 00038 00039 /* >>> start tutorial code >>> */ 00040 int main( ){ 00041 00042 USING_NAMESPACE_ACADO 00043 00044 00045 // DEFINE SOME MATRICES: 00046 // --------------------- 00047 DMatrix A(2,2), B(2,3), C(2,2); 00048 00049 A(0,0) = 1.0; A(0,1) = 2.0; 00050 A(1,0) = 3.0; A(1,1) = 4.0; 00051 00052 B(0,0) = 1.0; B(0,1) = 2.0; B(0,2) = 3.0; 00053 B(1,0) = 4.0; B(1,1) = 5.0; B(1,2) = 6.0; 00054 00055 C(0,0) = 1.0; C(0,1) = 2.0; 00056 C(1,0) = 4.0; C(1,1) = 5.0; 00057 00058 00059 // DEFINE SOME BLOCK MATRICES: 00060 // --------------------------- 00061 BlockMatrix M(2,2),N(2,3),P(2,3); 00062 00063 // ------------------------------------- 00064 // DEFINE A BLOCK MATRIX M OF THE FORM: 00065 // 00066 // ( 1 A ) 00067 // M := ( ) 00068 // ( 0 1 ) 00069 // 00070 // WHERE 1 IS A 2x2 UNIT MATRIX: 00071 // ------------------------------------- 00072 M.setIdentity(0,0,2); M.setDense (0,1,A); 00073 /* skip */ M.setIdentity(1,1,2); 00074 00075 // ------------------------------------- 00076 // DEFINE A BLOCK MATRIX N OF THE FORM: 00077 // 00078 // ( 1 B C ) 00079 // N := ( ) 00080 // ( 0 B 1 ) 00081 // 00082 // ------------------------------------- 00083 N.setIdentity(0,0,2); N.setDense(0,1,B); N.setDense (0,2,C); 00084 /* skip */ N.setDense(1,1,B); N.setIdentity(1,2,2); 00085 00086 00087 // PRINT THE MATRICES M AND N : 00088 // ------------------------------- 00089 printf("M = \n"); M.print(); 00090 printf("N = \n"); N.print(); 00091 00092 // COMPUTE THE MATRIX PRODUCT MN := M*N : 00093 // --------------------------------------- 00094 BlockMatrix MN; MN = M*N; 00095 00096 // PRINT THE RESULT FOR MN: 00097 // ------------------------ 00098 printf("MN = \n"); MN.print(); 00099 00100 // COMPUTE THE MATRIX PRODUCT MTN := M^T*N : 00101 // ------------------------------------------ 00102 BlockMatrix MTN; MTN = M^N; 00103 00104 // PRINT THE RESULT FOR MN: 00105 // ------------------------ 00106 printf("MTN = \n"); MTN.print(); 00107 00108 return 0; 00109 } 00110 /* <<< end tutorial code <<< */ 00111 00112