All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends Defines
Public Member Functions | Public Attributes
pcl_cloud_algos::RobustBoxEstimation Class Reference

#include <box_fit2_algo.h>

Inheritance diagram for pcl_cloud_algos::RobustBoxEstimation:
Inheritance graph
[legend]

List of all members.

Public Member Functions

ros::Publisher createPublisher (ros::NodeHandle &nh)
virtual bool find_model (boost::shared_ptr< const pcl::PointCloud< pcl::PointXYZINormal > > cloud, std::vector< double > &coeff)
 Function for actual SaC-based model fitting.
void getMinAndMax (Eigen::VectorXf model_coefficients, boost::shared_ptr< pcl::SACModelOrientation< pcl::PointXYZINormal > > model, std::vector< int > &min_max_indices, std::vector< float > &min_max_distances)
void pre ()
std::vector< std::stringrequires ()
 RobustBoxEstimation ()
 Constructor and destructor.

Public Attributes

double eps_angle_
 Inlier threshold for normals in radians.
double success_probability_
 If it is not in the (0,1) interval, exhaustive search will be done, otherwise it will be the probability to be set for RANSAC (tradeoff between speed and accuracy).

Detailed Description

Definition at line 40 of file box_fit2_algo.h.


Constructor & Destructor Documentation

Constructor and destructor.

Definition at line 61 of file box_fit2_algo.h.


Member Function Documentation

Reimplemented from pcl_cloud_algos::BoxEstimation.

Definition at line 84 of file box_fit2_algo.h.

bool RobustBoxEstimation::find_model ( boost::shared_ptr< const pcl::PointCloud< pcl::PointXYZINormal > >  cloud,
std::vector< double > &  coeff 
) [virtual]

Function for actual SaC-based model fitting.

Parameters:
cloudde-noisified input point cloud message with normals
coeffbox to-be-filled-in coefficients (15 elements): box center: cx, cy, cz, box dimensions: dx, dy, dz, box robust axes: e1_x, e1y, e1z, e2_x, e2y, e2z, e3_x, e3y, e3z

actual model fitting happens here

: inliers are actually indexes in the indices_ array, but that is not set (by default it has all the points in the correct order)

: making things transparent for the outside... not really needed

best_model_ contains actually the samples used to find the best model!

: making things transparent for the outside... not really needed

Reimplemented from pcl_cloud_algos::BoxEstimation.

Definition at line 111 of file box_fit2_algo.cpp.

void RobustBoxEstimation::getMinAndMax ( Eigen::VectorXf  model_coefficients,
boost::shared_ptr< pcl::SACModelOrientation< pcl::PointXYZINormal > >  model,
std::vector< int > &  min_max_indices,
std::vector< float > &  min_max_distances 
)

Definition at line 46 of file box_fit2_algo.cpp.

Reimplemented from pcl_cloud_algos::BoxEstimation.

Definition at line 100 of file box_fit2_algo.cpp.

std::vector< std::string > RobustBoxEstimation::requires ( ) [virtual]

Reimplemented from pcl_cloud_algos::BoxEstimation.

Definition at line 86 of file box_fit2_algo.cpp.


Member Data Documentation

Inlier threshold for normals in radians.

Definition at line 48 of file box_fit2_algo.h.

If it is not in the (0,1) interval, exhaustive search will be done, otherwise it will be the probability to be set for RANSAC (tradeoff between speed and accuracy).

Definition at line 55 of file box_fit2_algo.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends Defines


pcl_cloud_algos
Author(s): Nico Blodow, Dejan Pangercic, Zoltan-Csaba Marton
autogenerated on Sun Oct 6 2013 12:05:19