Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #include <pcl/features/multiscale_feature_persistence.h>
00039 #include <pcl/io/pcd_io.h>
00040 #include <pcl/filters/voxel_grid.h>
00041 #include <pcl/filters/extract_indices.h>
00042 #include <pcl/features/normal_3d.h>
00043 #include <pcl/features/fpfh.h>
00044
00045 #include <pcl/visualization/cloud_viewer.h>
00046
00047 using namespace pcl;
00048
00049 const Eigen::Vector4f subsampling_leaf_size (0.01f, 0.01f, 0.01f, 0.0f);
00050 const float normal_estimation_search_radius = 0.05f;
00051
00052
00053 void
00054 subsampleAndCalculateNormals (PointCloud<PointXYZ>::Ptr &cloud,
00055 PointCloud<PointXYZ>::Ptr &cloud_subsampled,
00056 PointCloud<Normal>::Ptr &cloud_subsampled_normals)
00057 {
00058 cloud_subsampled = PointCloud<PointXYZ>::Ptr (new PointCloud<PointXYZ> ());
00059 VoxelGrid<PointXYZ> subsampling_filter;
00060 subsampling_filter.setInputCloud (cloud);
00061 subsampling_filter.setLeafSize (subsampling_leaf_size);
00062 subsampling_filter.filter (*cloud_subsampled);
00063
00064 cloud_subsampled_normals = PointCloud<Normal>::Ptr (new PointCloud<Normal> ());
00065 NormalEstimation<PointXYZ, Normal> normal_estimation_filter;
00066 normal_estimation_filter.setInputCloud (cloud_subsampled);
00067 pcl::search::KdTree<PointXYZ>::Ptr search_tree (new pcl::search::KdTree<PointXYZ>);
00068 normal_estimation_filter.setSearchMethod (search_tree);
00069 normal_estimation_filter.setRadiusSearch (normal_estimation_search_radius);
00070 normal_estimation_filter.compute (*cloud_subsampled_normals);
00071 }
00072
00073
00074 int
00075 main (int argc, char **argv)
00076 {
00077 if (argc != 2)
00078 {
00079 PCL_ERROR ("Syntax: ./multiscale_feature_persistence_example [path_to_cloud.pcl]\n");
00080 return -1;
00081 }
00082
00083 PointCloud<PointXYZ>::Ptr cloud_scene (new PointCloud<PointXYZ> ());
00084 PCDReader reader;
00085 reader.read (argv[1], *cloud_scene);
00086
00087 PointCloud<PointXYZ>::Ptr cloud_subsampled;
00088 PointCloud<Normal>::Ptr cloud_subsampled_normals;
00089 subsampleAndCalculateNormals (cloud_scene, cloud_subsampled, cloud_subsampled_normals);
00090
00091 PCL_INFO ("STATS:\ninitial point cloud size: %u\nsubsampled point cloud size: %u\n", cloud_scene->points.size (), cloud_subsampled->points.size ());
00092 visualization::CloudViewer viewer ("Multiscale Feature Persistence Example Visualization");
00093 viewer.showCloud (cloud_scene, "scene");
00094
00095
00096 MultiscaleFeaturePersistence<PointXYZ, FPFHSignature33> feature_persistence;
00097 std::vector<float> scale_values;
00098 for (float x = 2.0f; x < 3.6f; x += 0.35f)
00099 scale_values.push_back (x / 100.0f);
00100 feature_persistence.setScalesVector (scale_values);
00101 feature_persistence.setAlpha (1.3f);
00102 FPFHEstimation<PointXYZ, Normal, FPFHSignature33>::Ptr fpfh_estimation (new FPFHEstimation<PointXYZ, Normal, FPFHSignature33> ());
00103 fpfh_estimation->setInputCloud (cloud_subsampled);
00104 fpfh_estimation->setInputNormals (cloud_subsampled_normals);
00105 pcl::search::KdTree<PointXYZ>::Ptr tree (new pcl::search::KdTree<PointXYZ> ());
00106 fpfh_estimation->setSearchMethod (tree);
00107 feature_persistence.setFeatureEstimator (fpfh_estimation);
00108 feature_persistence.setDistanceMetric (pcl::CS);
00109
00110 PointCloud<FPFHSignature33>::Ptr output_features (new PointCloud<FPFHSignature33> ());
00111 boost::shared_ptr<std::vector<int> > output_indices (new std::vector<int> ());
00112 feature_persistence.determinePersistentFeatures (*output_features, output_indices);
00113
00114 PCL_INFO ("persistent features cloud size: %u\n", output_features->points.size ());
00115
00116 ExtractIndices<PointXYZ> extract_indices_filter;
00117 extract_indices_filter.setInputCloud (cloud_subsampled);
00118 extract_indices_filter.setIndices (output_indices);
00119 PointCloud<PointXYZ>::Ptr persistent_features_locations (new PointCloud<PointXYZ> ());
00120 extract_indices_filter.filter (*persistent_features_locations);
00121
00122 viewer.showCloud (persistent_features_locations, "persistent features");
00123 PCL_INFO ("Persistent features have been computed. Waiting for the user to quit the visualization window.\n");
00124
00125
00126
00127
00128 while (!viewer.wasStopped (50));
00129
00130 return 0;
00131 }