Classes | 
| class   | process_dir_estimate.Scan | 
Namespaces | 
| namespace   | process_dir_estimate | 
Functions | 
| def  | process_dir_estimate.desired_ant | 
| def  | process_dir_estimate.get_mean | 
Variables | 
| tuple  | process_dir_estimate.bins = (XBINS,YBINS) | 
| tuple  | process_dir_estimate.bins_ind_x = np.sum( xy[0][:,np.newaxis] > xedges[:-1], axis = 1 ) | 
| tuple  | process_dir_estimate.bins_ind_y = np.sum( xy[1][:,np.newaxis] > yedges[:-1], axis = 1 ) | 
| tuple  | process_dir_estimate.d_new = pkl.load( f ) | 
| list  | process_dir_estimate.dist = npstats[2] | 
| tuple  | process_dir_estimate.f = open( yaml_fname ) | 
| tuple  | process_dir_estimate.fnames = reduce( lambda x,y: x+y, [ glob.glob(i) for i in yaml_config['glob_files'] ], [] ) | 
| string  | process_dir_estimate.help = 'yaml file that describes this run.' | 
| list  | process_dir_estimate.herr = npstats[5] | 
| tuple  | process_dir_estimate.ind_d = np.sum( dist[:,np.newaxis] > bins_d[:-1], axis=1) | 
| tuple  | process_dir_estimate.ind_r = np.sum( rssi[:,np.newaxis] > bins_r[:-1], axis=1) | 
| tuple  | process_dir_estimate.magherr = np.abs( herr ) | 
| tuple  | process_dir_estimate.magherr_md = np.array([ np.mean( magherr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ]) | 
| tuple  | process_dir_estimate.magherr_mr = np.array([ np.mean( magherr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ]) | 
| tuple  | process_dir_estimate.magherr_sd = np.array([ np.std( magherr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ]) | 
| tuple  | process_dir_estimate.magherr_sr = np.array([ np.std( magherr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ]) | 
| tuple  | process_dir_estimate.magherr_Z = np.ma.array( np.copy(H.T), mask=(H.T < 1) ) | 
| tuple  | process_dir_estimate.magserr = np.abs( serr ) | 
| tuple  | process_dir_estimate.magserr_md = np.array([ np.mean( magserr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ]) | 
| tuple  | process_dir_estimate.magserr_mr = np.array([ np.mean( magserr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ]) | 
| tuple  | process_dir_estimate.magserr_sd = np.array([ np.std( magserr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ]) | 
| tuple  | process_dir_estimate.magserr_sr = np.array([ np.std( magserr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ]) | 
| tuple  | process_dir_estimate.magserr_Z = np.ma.array( np.copy(H.T), mask=(H.T < 1) ) | 
| tuple  | process_dir_estimate.npstats = np.array( stats ) | 
| tuple  | process_dir_estimate.num_d = np.array([ len( np.where( ind_d == i )[0] ) for i in xrange(len(h_d)) ]) | 
| tuple  | process_dir_estimate.num_r = np.array([ len( np.where( ind_r == i )[0] ) for i in xrange(len(h_r)) ]) | 
| tuple  | process_dir_estimate.p = optparse.OptionParser() | 
|   | process_dir_estimate.PLOT = False | 
| list  | process_dir_estimate.range | 
| list  | process_dir_estimate.rssi = npstats[3] | 
| list  | process_dir_estimate.scans = [] | 
| list  | process_dir_estimate.serr = npstats[7] | 
| int  | process_dir_estimate.skipped = 0 | 
| tuple  | process_dir_estimate.sr = string.rfind( f, '/' ) | 
| list  | process_dir_estimate.stats = [] | 
| int  | process_dir_estimate.XBINS = 9 | 
| float  | process_dir_estimate.XMAX = 11.0 | 
| float  | process_dir_estimate.XMIN = 0.0 | 
| tuple  | process_dir_estimate.xy | 
| tuple  | process_dir_estimate.yaml_config = yaml.load( f ) | 
|   | process_dir_estimate.yaml_fname = opt.yaml | 
| int  | process_dir_estimate.YBINS = 5 | 
| float  | process_dir_estimate.YMAX = 7.0 | 
| float  | process_dir_estimate.YMIN = 0.0 |