Classes | Namespaces | Functions | Variables
process_dir_estimate.py File Reference

Go to the source code of this file.

Classes

class  process_dir_estimate.Scan

Namespaces

namespace  process_dir_estimate

Functions

def process_dir_estimate.desired_ant
def process_dir_estimate.get_mean

Variables

tuple process_dir_estimate.bins = (XBINS,YBINS)
tuple process_dir_estimate.bins_ind_x = np.sum( xy[0][:,np.newaxis] > xedges[:-1], axis = 1 )
tuple process_dir_estimate.bins_ind_y = np.sum( xy[1][:,np.newaxis] > yedges[:-1], axis = 1 )
tuple process_dir_estimate.d_new = pkl.load( f )
list process_dir_estimate.dist = npstats[2]
tuple process_dir_estimate.f = open( yaml_fname )
tuple process_dir_estimate.fnames = reduce( lambda x,y: x+y, [ glob.glob(i) for i in yaml_config['glob_files'] ], [] )
string process_dir_estimate.help = 'yaml file that describes this run.'
list process_dir_estimate.herr = npstats[5]
tuple process_dir_estimate.ind_d = np.sum( dist[:,np.newaxis] > bins_d[:-1], axis=1)
tuple process_dir_estimate.ind_r = np.sum( rssi[:,np.newaxis] > bins_r[:-1], axis=1)
tuple process_dir_estimate.magherr = np.abs( herr )
tuple process_dir_estimate.magherr_md = np.array([ np.mean( magherr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ])
tuple process_dir_estimate.magherr_mr = np.array([ np.mean( magherr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ])
tuple process_dir_estimate.magherr_sd = np.array([ np.std( magherr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ])
tuple process_dir_estimate.magherr_sr = np.array([ np.std( magherr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ])
tuple process_dir_estimate.magherr_Z = np.ma.array( np.copy(H.T), mask=(H.T < 1) )
tuple process_dir_estimate.magserr = np.abs( serr )
tuple process_dir_estimate.magserr_md = np.array([ np.mean( magserr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ])
tuple process_dir_estimate.magserr_mr = np.array([ np.mean( magserr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ])
tuple process_dir_estimate.magserr_sd = np.array([ np.std( magserr[ np.where( ind_d == i )[0] ]) for i in xrange(len(h_d)) ])
tuple process_dir_estimate.magserr_sr = np.array([ np.std( magserr[ np.where( ind_r == i )[0] ]) for i in xrange(len(h_r)) ])
tuple process_dir_estimate.magserr_Z = np.ma.array( np.copy(H.T), mask=(H.T < 1) )
tuple process_dir_estimate.npstats = np.array( stats )
tuple process_dir_estimate.num_d = np.array([ len( np.where( ind_d == i )[0] ) for i in xrange(len(h_d)) ])
tuple process_dir_estimate.num_r = np.array([ len( np.where( ind_r == i )[0] ) for i in xrange(len(h_r)) ])
tuple process_dir_estimate.p = optparse.OptionParser()
 process_dir_estimate.PLOT = False
list process_dir_estimate.range
list process_dir_estimate.rssi = npstats[3]
list process_dir_estimate.scans = []
list process_dir_estimate.serr = npstats[7]
int process_dir_estimate.skipped = 0
tuple process_dir_estimate.sr = string.rfind( f, '/' )
list process_dir_estimate.stats = []
int process_dir_estimate.XBINS = 9
float process_dir_estimate.XMAX = 11.0
float process_dir_estimate.XMIN = 0.0
tuple process_dir_estimate.xy
tuple process_dir_estimate.yaml_config = yaml.load( f )
 process_dir_estimate.yaml_fname = opt.yaml
int process_dir_estimate.YBINS = 5
float process_dir_estimate.YMAX = 7.0
float process_dir_estimate.YMIN = 0.0


rfid_datacapture
Author(s): Travis Deyle
autogenerated on Wed Nov 27 2013 12:11:16