00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #include "main.h"
00026 #include <Eigen/Geometry>
00027 #include <Eigen/LU>
00028 #include <Eigen/SVD>
00029
00030 template<typename Scalar> void geometry(void)
00031 {
00032
00033
00034
00035
00036 typedef Matrix<Scalar,2,2> Matrix2;
00037 typedef Matrix<Scalar,3,3> Matrix3;
00038 typedef Matrix<Scalar,4,4> Matrix4;
00039 typedef Matrix<Scalar,2,1> Vector2;
00040 typedef Matrix<Scalar,3,1> Vector3;
00041 typedef Matrix<Scalar,4,1> Vector4;
00042 typedef Quaternion<Scalar> Quaternionx;
00043 typedef AngleAxis<Scalar> AngleAxisx;
00044 typedef Transform<Scalar,2> Transform2;
00045 typedef Transform<Scalar,3> Transform3;
00046 typedef Scaling<Scalar,2> Scaling2;
00047 typedef Scaling<Scalar,3> Scaling3;
00048 typedef Translation<Scalar,2> Translation2;
00049 typedef Translation<Scalar,3> Translation3;
00050
00051 Scalar largeEps = test_precision<Scalar>();
00052 if (ei_is_same_type<Scalar,float>::ret)
00053 largeEps = 1e-2f;
00054
00055 Vector3 v0 = Vector3::Random(),
00056 v1 = Vector3::Random(),
00057 v2 = Vector3::Random();
00058 Vector2 u0 = Vector2::Random();
00059 Matrix3 matrot1;
00060
00061 Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
00062
00063
00064 VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
00065 Matrix3 m;
00066 m << v0.normalized(),
00067 (v0.cross(v1)).normalized(),
00068 (v0.cross(v1).cross(v0)).normalized();
00069 VERIFY(m.isUnitary());
00070
00071
00072 Quaternionx q1, q2;
00073 q2.setIdentity();
00074 VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
00075 q1.coeffs().setRandom();
00076 VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
00077
00078
00079 VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
00080 VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
00081 VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
00082 VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
00083
00084
00085 VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
00086 VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
00087 VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
00088 m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
00089 VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
00090 VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
00091
00092 q1 = AngleAxisx(a, v0.normalized());
00093 q2 = AngleAxisx(a, v1.normalized());
00094
00095
00096 Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
00097 if (refangle>Scalar(M_PI))
00098 refangle = Scalar(2)*Scalar(M_PI) - refangle;
00099
00100 if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
00101 {
00102 VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
00103 }
00104
00105
00106 VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
00107 VERIFY_IS_APPROX(q1 * q2 * v2,
00108 q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
00109
00110 VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
00111 q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
00112
00113 q2 = q1.toRotationMatrix();
00114 VERIFY_IS_APPROX(q1*v1,q2*v1);
00115
00116 matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
00117 * AngleAxisx(Scalar(0.2), Vector3::UnitY())
00118 * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
00119 VERIFY_IS_APPROX(matrot1 * v1,
00120 AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
00121 * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
00122 * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
00123
00124
00125 AngleAxisx aa = q1;
00126 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
00127 VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
00128
00129
00130 VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
00131 VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
00132
00133
00134 VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
00135 VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
00136
00137
00138 VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
00139 Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
00140
00141 AngleAxisx aa1;
00142 m = q1.toRotationMatrix();
00143 aa1 = m;
00144 VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
00145 Quaternionx(m).toRotationMatrix());
00146
00147
00148
00149 a = 0;
00150 while (ei_abs(a)<Scalar(0.1))
00151 a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
00152 q1 = AngleAxisx(a, v0.normalized());
00153 Transform3 t0, t1, t2;
00154
00155 t0.setIdentity();
00156 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
00157 t0.matrix().setZero();
00158 t0 = Transform3::Identity();
00159 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
00160
00161 t0.linear() = q1.toRotationMatrix();
00162 t1.setIdentity();
00163 t1.linear() = q1.toRotationMatrix();
00164
00165 v0 << 50, 2, 1;
00166 t0.scale(v0);
00167 t1.prescale(v0);
00168
00169 VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
00170
00171
00172 t0.setIdentity();
00173 t1.setIdentity();
00174 v1 << 1, 2, 3;
00175 t0.linear() = q1.toRotationMatrix();
00176 t0.pretranslate(v0);
00177 t0.scale(v1);
00178 t1.linear() = q1.conjugate().toRotationMatrix();
00179 t1.prescale(v1.cwise().inverse());
00180 t1.translate(-v0);
00181
00182 VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
00183
00184 t1.fromPositionOrientationScale(v0, q1, v1);
00185 VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
00186 VERIFY_IS_APPROX(t1*v1, t0*v1);
00187
00188 t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
00189 t1.setIdentity(); t1.scale(v0).rotate(q1);
00190 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00191
00192 t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
00193 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00194
00195 VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
00196 VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
00197
00198
00199
00200 Matrix3 mat3 = Matrix3::Random();
00201 Matrix4 mat4;
00202 mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
00203 Transform3 tmat3(mat3), tmat4(mat4);
00204 tmat4.matrix()(3,3) = Scalar(1);
00205 VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
00206
00207 Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
00208 Vector3 v3 = Vector3::Random().normalized();
00209 AngleAxisx aa3(a3, v3);
00210 Transform3 t3(aa3);
00211 Transform3 t4;
00212 t4 = aa3;
00213 VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
00214 t4.rotate(AngleAxisx(-a3,v3));
00215 VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
00216 t4 *= aa3;
00217 VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
00218
00219 v3 = Vector3::Random();
00220 Translation3 tv3(v3);
00221 Transform3 t5(tv3);
00222 t4 = tv3;
00223 VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
00224 t4.translate(-v3);
00225 VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
00226 t4 *= tv3;
00227 VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
00228
00229 Scaling3 sv3(v3);
00230 Transform3 t6(sv3);
00231 t4 = sv3;
00232 VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
00233 t4.scale(v3.cwise().inverse());
00234 VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
00235 t4 *= sv3;
00236 VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
00237
00238
00239 VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
00240
00241
00242 VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
00243
00244
00245 t5 = t4;
00246 t5 = t5*t5;
00247 VERIFY_IS_APPROX(t5, t4*t4);
00248
00249
00250 Transform2 t20, t21;
00251 Vector2 v20 = Vector2::Random();
00252 Vector2 v21 = Vector2::Random();
00253 for (int k=0; k<2; ++k)
00254 if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
00255 t21.setIdentity();
00256 t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
00257 VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
00258 t21.pretranslate(v20).scale(v21).matrix());
00259
00260 t21.setIdentity();
00261 t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
00262 VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
00263 * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
00264
00265
00266
00267 t0.setIdentity();
00268 t0.rotate(q1).scale(v0).translate(v0);
00269
00270 t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
00271 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00272
00273 t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
00274 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00275
00276 t0.setIdentity();
00277 t0.prerotate(q1).prescale(v0).pretranslate(v0);
00278
00279 t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
00280 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00281
00282 t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
00283 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00284
00285 t0.setIdentity();
00286 t0.scale(v0).translate(v0).rotate(q1);
00287
00288 t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
00289 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00290
00291 t0.scale(v0);
00292 t1 = t1 * Scaling3(v0);
00293 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00294
00295 t0.translate(v0);
00296 t1 = t1 * Translation3(v0);
00297 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00298
00299 t0.pretranslate(v0);
00300 t1 = Translation3(v0) * t1;
00301 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00302
00303
00304 t0.rotate(q1);
00305 t1 = t1 * q1;
00306 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00307
00308
00309 t0.translate(v1).rotate(q1);
00310 t1 = t1 * (Translation3(v1) * q1);
00311 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00312
00313
00314 t0.scale(v1).rotate(q1);
00315 t1 = t1 * (Scaling3(v1) * q1);
00316 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00317
00318
00319 t0.prerotate(q1);
00320 t1 = q1 * t1;
00321 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00322
00323
00324 t0.rotate(q1).translate(v1);
00325 t1 = t1 * (q1 * Translation3(v1));
00326 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00327
00328
00329 t0.rotate(q1).scale(v1);
00330 t1 = t1 * (q1 * Scaling3(v1));
00331 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00332
00333
00334 t0.setIdentity();
00335 t0.translate(v0);
00336 VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
00337
00338
00339 t0.setIdentity();
00340 t0.scale(v0);
00341 VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
00342
00343
00344 t0.setIdentity();
00345 t0.translate(v0);
00346 t0.linear().setRandom();
00347 VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
00348 t0.setIdentity();
00349 t0.translate(v0).rotate(q1);
00350 VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
00351
00352
00353 t0.setIdentity();
00354 t0.translate(v0).rotate(q1).scale(v1);
00355 VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
00356
00357 Matrix3 mat_rotation, mat_scaling;
00358 t0.setIdentity();
00359 t0.translate(v0).rotate(q1).scale(v1);
00360 t0.computeRotationScaling(&mat_rotation, &mat_scaling);
00361 VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
00362 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
00363 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
00364 t0.computeScalingRotation(&mat_scaling, &mat_rotation);
00365 VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
00366 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
00367 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
00368
00369
00370 Transform<float,3> t1f = t1.template cast<float>();
00371 VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
00372 Transform<double,3> t1d = t1.template cast<double>();
00373 VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
00374
00375 Translation3 tr1(v0);
00376 Translation<float,3> tr1f = tr1.template cast<float>();
00377 VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
00378 Translation<double,3> tr1d = tr1.template cast<double>();
00379 VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
00380
00381 Scaling3 sc1(v0);
00382 Scaling<float,3> sc1f = sc1.template cast<float>();
00383 VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
00384 Scaling<double,3> sc1d = sc1.template cast<double>();
00385 VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
00386
00387 Quaternion<float> q1f = q1.template cast<float>();
00388 VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
00389 Quaternion<double> q1d = q1.template cast<double>();
00390 VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
00391
00392 AngleAxis<float> aa1f = aa1.template cast<float>();
00393 VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
00394 AngleAxis<double> aa1d = aa1.template cast<double>();
00395 VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
00396
00397 Rotation2D<Scalar> r2d1(ei_random<Scalar>());
00398 Rotation2D<float> r2d1f = r2d1.template cast<float>();
00399 VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
00400 Rotation2D<double> r2d1d = r2d1.template cast<double>();
00401 VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
00402
00403 m = q1;
00404
00405
00406
00407 #define VERIFY_EULER(I,J,K, X,Y,Z) { \
00408 Vector3 ea = m.eulerAngles(I,J,K); \
00409 Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
00410 VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
00411 }
00412 VERIFY_EULER(0,1,2, X,Y,Z);
00413 VERIFY_EULER(0,1,0, X,Y,X);
00414 VERIFY_EULER(0,2,1, X,Z,Y);
00415 VERIFY_EULER(0,2,0, X,Z,X);
00416
00417 VERIFY_EULER(1,2,0, Y,Z,X);
00418 VERIFY_EULER(1,2,1, Y,Z,Y);
00419 VERIFY_EULER(1,0,2, Y,X,Z);
00420 VERIFY_EULER(1,0,1, Y,X,Y);
00421
00422 VERIFY_EULER(2,0,1, Z,X,Y);
00423 VERIFY_EULER(2,0,2, Z,X,Z);
00424 VERIFY_EULER(2,1,0, Z,Y,X);
00425 VERIFY_EULER(2,1,2, Z,Y,Z);
00426
00427
00428 mat3.setRandom();
00429 Vector3 vec3 = Vector3::Random();
00430 Matrix3 mcross;
00431 int i = ei_random<int>(0,2);
00432 mcross = mat3.colwise().cross(vec3);
00433 VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
00434 mcross = mat3.rowwise().cross(vec3);
00435 VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
00436
00437
00438 }
00439
00440 void test_eigen2_geometry()
00441 {
00442 for(int i = 0; i < g_repeat; i++) {
00443 CALL_SUBTEST_1( geometry<float>() );
00444 CALL_SUBTEST_2( geometry<double>() );
00445 }
00446 }