PickPlaceObject.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-remote_lab/doc_stacks/2014-01-05_11-23-35.722910/remote_lab/pr2_pick_and_place_service/msg/PickPlaceObject.msg */
00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
00003 #define PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "geometry_msgs/PoseStamped.h"
00019 
00020 namespace pr2_pick_and_place_service
00021 {
00022 template <class ContainerAllocator>
00023 struct PickPlaceObject_ {
00024   typedef PickPlaceObject_<ContainerAllocator> Type;
00025 
00026   PickPlaceObject_()
00027   : objectid(0)
00028   , object()
00029   , pose()
00030   , boundingbox()
00031   {
00032   }
00033 
00034   PickPlaceObject_(const ContainerAllocator& _alloc)
00035   : objectid(0)
00036   , object(_alloc)
00037   , pose(_alloc)
00038   , boundingbox(_alloc)
00039   {
00040   }
00041 
00042   typedef int32_t _objectid_type;
00043   int32_t objectid;
00044 
00045   typedef  ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  _object_type;
00046    ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  object;
00047 
00048   typedef  ::geometry_msgs::PoseStamped_<ContainerAllocator>  _pose_type;
00049    ::geometry_msgs::PoseStamped_<ContainerAllocator>  pose;
00050 
00051   typedef std::vector<double, typename ContainerAllocator::template rebind<double>::other >  _boundingbox_type;
00052   std::vector<double, typename ContainerAllocator::template rebind<double>::other >  boundingbox;
00053 
00054 
00055   typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > Ptr;
00056   typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator>  const> ConstPtr;
00057   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00058 }; // struct PickPlaceObject
00059 typedef  ::pr2_pick_and_place_service::PickPlaceObject_<std::allocator<void> > PickPlaceObject;
00060 
00061 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject> PickPlaceObjectPtr;
00062 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject const> PickPlaceObjectConstPtr;
00063 
00064 
00065 template<typename ContainerAllocator>
00066 std::ostream& operator<<(std::ostream& s, const  ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v)
00067 {
00068   ros::message_operations::Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::stream(s, "", v);
00069   return s;}
00070 
00071 } // namespace pr2_pick_and_place_service
00072 
00073 namespace ros
00074 {
00075 namespace message_traits
00076 {
00077 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > : public TrueType {};
00078 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator>  const> : public TrueType {};
00079 template<class ContainerAllocator>
00080 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00081   static const char* value() 
00082   {
00083     return "ffd374baae36dd335477c70d55c3f483";
00084   }
00085 
00086   static const char* value(const  ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 
00087   static const uint64_t static_value1 = 0xffd374baae36dd33ULL;
00088   static const uint64_t static_value2 = 0x5477c70d55c3f483ULL;
00089 };
00090 
00091 template<class ContainerAllocator>
00092 struct DataType< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00093   static const char* value() 
00094   {
00095     return "pr2_pick_and_place_service/PickPlaceObject";
00096   }
00097 
00098   static const char* value(const  ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 
00099 };
00100 
00101 template<class ContainerAllocator>
00102 struct Definition< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00103   static const char* value() 
00104   {
00105     return "int32 objectid\n\
00106 object_manipulation_msgs/GraspableObject object\n\
00107 geometry_msgs/PoseStamped pose\n\
00108 float64[] boundingbox\n\
00109 \n\
00110 ================================================================================\n\
00111 MSG: object_manipulation_msgs/GraspableObject\n\
00112 # an object that the object_manipulator can work on\n\
00113 \n\
00114 # a graspable object can be represented in multiple ways. This message\n\
00115 # can contain all of them. Which one is actually used is up to the receiver\n\
00116 # of this message. When adding new representations, one must be careful that\n\
00117 # they have reasonable lightweight defaults indicating that that particular\n\
00118 # representation is not available.\n\
00119 \n\
00120 # the tf frame to be used as a reference frame when combining information from\n\
00121 # the different representations below\n\
00122 string reference_frame_id\n\
00123 \n\
00124 # potential recognition results from a database of models\n\
00125 # all poses are relative to the object reference pose\n\
00126 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00127 \n\
00128 # the point cloud itself\n\
00129 sensor_msgs/PointCloud cluster\n\
00130 \n\
00131 # a region of a PointCloud2 of interest\n\
00132 object_manipulation_msgs/SceneRegion region\n\
00133 \n\
00134 # the name that this object has in the collision environment\n\
00135 string collision_name\n\
00136 ================================================================================\n\
00137 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00138 # Informs that a specific model from the Model Database has been \n\
00139 # identified at a certain location\n\
00140 \n\
00141 # the database id of the model\n\
00142 int32 model_id\n\
00143 \n\
00144 # the pose that it can be found in\n\
00145 geometry_msgs/PoseStamped pose\n\
00146 \n\
00147 # a measure of the confidence level in this detection result\n\
00148 float32 confidence\n\
00149 \n\
00150 # the name of the object detector that generated this detection result\n\
00151 string detector_name\n\
00152 \n\
00153 ================================================================================\n\
00154 MSG: geometry_msgs/PoseStamped\n\
00155 # A Pose with reference coordinate frame and timestamp\n\
00156 Header header\n\
00157 Pose pose\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: std_msgs/Header\n\
00161 # Standard metadata for higher-level stamped data types.\n\
00162 # This is generally used to communicate timestamped data \n\
00163 # in a particular coordinate frame.\n\
00164 # \n\
00165 # sequence ID: consecutively increasing ID \n\
00166 uint32 seq\n\
00167 #Two-integer timestamp that is expressed as:\n\
00168 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00169 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00170 # time-handling sugar is provided by the client library\n\
00171 time stamp\n\
00172 #Frame this data is associated with\n\
00173 # 0: no frame\n\
00174 # 1: global frame\n\
00175 string frame_id\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: geometry_msgs/Pose\n\
00179 # A representation of pose in free space, composed of postion and orientation. \n\
00180 Point position\n\
00181 Quaternion orientation\n\
00182 \n\
00183 ================================================================================\n\
00184 MSG: geometry_msgs/Point\n\
00185 # This contains the position of a point in free space\n\
00186 float64 x\n\
00187 float64 y\n\
00188 float64 z\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: geometry_msgs/Quaternion\n\
00192 # This represents an orientation in free space in quaternion form.\n\
00193 \n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 float64 w\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: sensor_msgs/PointCloud\n\
00201 # This message holds a collection of 3d points, plus optional additional\n\
00202 # information about each point.\n\
00203 \n\
00204 # Time of sensor data acquisition, coordinate frame ID.\n\
00205 Header header\n\
00206 \n\
00207 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00208 # in the frame given in the header.\n\
00209 geometry_msgs/Point32[] points\n\
00210 \n\
00211 # Each channel should have the same number of elements as points array,\n\
00212 # and the data in each channel should correspond 1:1 with each point.\n\
00213 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00214 ChannelFloat32[] channels\n\
00215 \n\
00216 ================================================================================\n\
00217 MSG: geometry_msgs/Point32\n\
00218 # This contains the position of a point in free space(with 32 bits of precision).\n\
00219 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00220 # \n\
00221 # This recommendation is to promote interoperability.  \n\
00222 #\n\
00223 # This message is designed to take up less space when sending\n\
00224 # lots of points at once, as in the case of a PointCloud.  \n\
00225 \n\
00226 float32 x\n\
00227 float32 y\n\
00228 float32 z\n\
00229 ================================================================================\n\
00230 MSG: sensor_msgs/ChannelFloat32\n\
00231 # This message is used by the PointCloud message to hold optional data\n\
00232 # associated with each point in the cloud. The length of the values\n\
00233 # array should be the same as the length of the points array in the\n\
00234 # PointCloud, and each value should be associated with the corresponding\n\
00235 # point.\n\
00236 \n\
00237 # Channel names in existing practice include:\n\
00238 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00239 #              This is opposite to usual conventions but remains for\n\
00240 #              historical reasons. The newer PointCloud2 message has no\n\
00241 #              such problem.\n\
00242 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00243 #           (R,G,B) values packed into the least significant 24 bits,\n\
00244 #           in order.\n\
00245 #   \"intensity\" - laser or pixel intensity.\n\
00246 #   \"distance\"\n\
00247 \n\
00248 # The channel name should give semantics of the channel (e.g.\n\
00249 # \"intensity\" instead of \"value\").\n\
00250 string name\n\
00251 \n\
00252 # The values array should be 1-1 with the elements of the associated\n\
00253 # PointCloud.\n\
00254 float32[] values\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: object_manipulation_msgs/SceneRegion\n\
00258 # Point cloud\n\
00259 sensor_msgs/PointCloud2 cloud\n\
00260 \n\
00261 # Indices for the region of interest\n\
00262 int32[] mask\n\
00263 \n\
00264 # One of the corresponding 2D images, if applicable\n\
00265 sensor_msgs/Image image\n\
00266 \n\
00267 # The disparity image, if applicable\n\
00268 sensor_msgs/Image disparity_image\n\
00269 \n\
00270 # Camera info for the camera that took the image\n\
00271 sensor_msgs/CameraInfo cam_info\n\
00272 \n\
00273 # a 3D region of interest for grasp planning\n\
00274 geometry_msgs/PoseStamped  roi_box_pose\n\
00275 geometry_msgs/Vector3      roi_box_dims\n\
00276 \n\
00277 ================================================================================\n\
00278 MSG: sensor_msgs/PointCloud2\n\
00279 # This message holds a collection of N-dimensional points, which may\n\
00280 # contain additional information such as normals, intensity, etc. The\n\
00281 # point data is stored as a binary blob, its layout described by the\n\
00282 # contents of the \"fields\" array.\n\
00283 \n\
00284 # The point cloud data may be organized 2d (image-like) or 1d\n\
00285 # (unordered). Point clouds organized as 2d images may be produced by\n\
00286 # camera depth sensors such as stereo or time-of-flight.\n\
00287 \n\
00288 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00289 # points).\n\
00290 Header header\n\
00291 \n\
00292 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00293 # 1 and width is the length of the point cloud.\n\
00294 uint32 height\n\
00295 uint32 width\n\
00296 \n\
00297 # Describes the channels and their layout in the binary data blob.\n\
00298 PointField[] fields\n\
00299 \n\
00300 bool    is_bigendian # Is this data bigendian?\n\
00301 uint32  point_step   # Length of a point in bytes\n\
00302 uint32  row_step     # Length of a row in bytes\n\
00303 uint8[] data         # Actual point data, size is (row_step*height)\n\
00304 \n\
00305 bool is_dense        # True if there are no invalid points\n\
00306 \n\
00307 ================================================================================\n\
00308 MSG: sensor_msgs/PointField\n\
00309 # This message holds the description of one point entry in the\n\
00310 # PointCloud2 message format.\n\
00311 uint8 INT8    = 1\n\
00312 uint8 UINT8   = 2\n\
00313 uint8 INT16   = 3\n\
00314 uint8 UINT16  = 4\n\
00315 uint8 INT32   = 5\n\
00316 uint8 UINT32  = 6\n\
00317 uint8 FLOAT32 = 7\n\
00318 uint8 FLOAT64 = 8\n\
00319 \n\
00320 string name      # Name of field\n\
00321 uint32 offset    # Offset from start of point struct\n\
00322 uint8  datatype  # Datatype enumeration, see above\n\
00323 uint32 count     # How many elements in the field\n\
00324 \n\
00325 ================================================================================\n\
00326 MSG: sensor_msgs/Image\n\
00327 # This message contains an uncompressed image\n\
00328 # (0, 0) is at top-left corner of image\n\
00329 #\n\
00330 \n\
00331 Header header        # Header timestamp should be acquisition time of image\n\
00332                      # Header frame_id should be optical frame of camera\n\
00333                      # origin of frame should be optical center of cameara\n\
00334                      # +x should point to the right in the image\n\
00335                      # +y should point down in the image\n\
00336                      # +z should point into to plane of the image\n\
00337                      # If the frame_id here and the frame_id of the CameraInfo\n\
00338                      # message associated with the image conflict\n\
00339                      # the behavior is undefined\n\
00340 \n\
00341 uint32 height         # image height, that is, number of rows\n\
00342 uint32 width          # image width, that is, number of columns\n\
00343 \n\
00344 # The legal values for encoding are in file src/image_encodings.cpp\n\
00345 # If you want to standardize a new string format, join\n\
00346 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00347 \n\
00348 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00349                       # taken from the list of strings in src/image_encodings.cpp\n\
00350 \n\
00351 uint8 is_bigendian    # is this data bigendian?\n\
00352 uint32 step           # Full row length in bytes\n\
00353 uint8[] data          # actual matrix data, size is (step * rows)\n\
00354 \n\
00355 ================================================================================\n\
00356 MSG: sensor_msgs/CameraInfo\n\
00357 # This message defines meta information for a camera. It should be in a\n\
00358 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00359 # image topics named:\n\
00360 #\n\
00361 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00362 #   image            - monochrome, distorted\n\
00363 #   image_color      - color, distorted\n\
00364 #   image_rect       - monochrome, rectified\n\
00365 #   image_rect_color - color, rectified\n\
00366 #\n\
00367 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00368 # for producing the four processed image topics from image_raw and\n\
00369 # camera_info. The meaning of the camera parameters are described in\n\
00370 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00371 #\n\
00372 # The image_geometry package provides a user-friendly interface to\n\
00373 # common operations using this meta information. If you want to, e.g.,\n\
00374 # project a 3d point into image coordinates, we strongly recommend\n\
00375 # using image_geometry.\n\
00376 #\n\
00377 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00378 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00379 # indicates an uncalibrated camera.\n\
00380 \n\
00381 #######################################################################\n\
00382 #                     Image acquisition info                          #\n\
00383 #######################################################################\n\
00384 \n\
00385 # Time of image acquisition, camera coordinate frame ID\n\
00386 Header header    # Header timestamp should be acquisition time of image\n\
00387                  # Header frame_id should be optical frame of camera\n\
00388                  # origin of frame should be optical center of camera\n\
00389                  # +x should point to the right in the image\n\
00390                  # +y should point down in the image\n\
00391                  # +z should point into the plane of the image\n\
00392 \n\
00393 \n\
00394 #######################################################################\n\
00395 #                      Calibration Parameters                         #\n\
00396 #######################################################################\n\
00397 # These are fixed during camera calibration. Their values will be the #\n\
00398 # same in all messages until the camera is recalibrated. Note that    #\n\
00399 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00400 #                                                                     #\n\
00401 # The internal parameters can be used to warp a raw (distorted) image #\n\
00402 # to:                                                                 #\n\
00403 #   1. An undistorted image (requires D and K)                        #\n\
00404 #   2. A rectified image (requires D, K, R)                           #\n\
00405 # The projection matrix P projects 3D points into the rectified image.#\n\
00406 #######################################################################\n\
00407 \n\
00408 # The image dimensions with which the camera was calibrated. Normally\n\
00409 # this will be the full camera resolution in pixels.\n\
00410 uint32 height\n\
00411 uint32 width\n\
00412 \n\
00413 # The distortion model used. Supported models are listed in\n\
00414 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00415 # simple model of radial and tangential distortion - is sufficent.\n\
00416 string distortion_model\n\
00417 \n\
00418 # The distortion parameters, size depending on the distortion model.\n\
00419 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00420 float64[] D\n\
00421 \n\
00422 # Intrinsic camera matrix for the raw (distorted) images.\n\
00423 #     [fx  0 cx]\n\
00424 # K = [ 0 fy cy]\n\
00425 #     [ 0  0  1]\n\
00426 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00427 # coordinates using the focal lengths (fx, fy) and principal point\n\
00428 # (cx, cy).\n\
00429 float64[9]  K # 3x3 row-major matrix\n\
00430 \n\
00431 # Rectification matrix (stereo cameras only)\n\
00432 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00433 # stereo image plane so that epipolar lines in both stereo images are\n\
00434 # parallel.\n\
00435 float64[9]  R # 3x3 row-major matrix\n\
00436 \n\
00437 # Projection/camera matrix\n\
00438 #     [fx'  0  cx' Tx]\n\
00439 # P = [ 0  fy' cy' Ty]\n\
00440 #     [ 0   0   1   0]\n\
00441 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00442 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00443 #  is the normal camera intrinsic matrix for the rectified image.\n\
00444 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00445 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00446 #  (cx', cy') - these may differ from the values in K.\n\
00447 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00448 #  also have R = the identity and P[1:3,1:3] = K.\n\
00449 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00450 #  position of the optical center of the second camera in the first\n\
00451 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00452 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00453 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00454 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00455 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00456 #  the rectified image is given by:\n\
00457 #  [u v w]' = P * [X Y Z 1]'\n\
00458 #         x = u / w\n\
00459 #         y = v / w\n\
00460 #  This holds for both images of a stereo pair.\n\
00461 float64[12] P # 3x4 row-major matrix\n\
00462 \n\
00463 \n\
00464 #######################################################################\n\
00465 #                      Operational Parameters                         #\n\
00466 #######################################################################\n\
00467 # These define the image region actually captured by the camera       #\n\
00468 # driver. Although they affect the geometry of the output image, they #\n\
00469 # may be changed freely without recalibrating the camera.             #\n\
00470 #######################################################################\n\
00471 \n\
00472 # Binning refers here to any camera setting which combines rectangular\n\
00473 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00474 #  resolution of the output image to\n\
00475 #  (width / binning_x) x (height / binning_y).\n\
00476 # The default values binning_x = binning_y = 0 is considered the same\n\
00477 #  as binning_x = binning_y = 1 (no subsampling).\n\
00478 uint32 binning_x\n\
00479 uint32 binning_y\n\
00480 \n\
00481 # Region of interest (subwindow of full camera resolution), given in\n\
00482 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00483 #  always denotes the same window of pixels on the camera sensor,\n\
00484 #  regardless of binning settings.\n\
00485 # The default setting of roi (all values 0) is considered the same as\n\
00486 #  full resolution (roi.width = width, roi.height = height).\n\
00487 RegionOfInterest roi\n\
00488 \n\
00489 ================================================================================\n\
00490 MSG: sensor_msgs/RegionOfInterest\n\
00491 # This message is used to specify a region of interest within an image.\n\
00492 #\n\
00493 # When used to specify the ROI setting of the camera when the image was\n\
00494 # taken, the height and width fields should either match the height and\n\
00495 # width fields for the associated image; or height = width = 0\n\
00496 # indicates that the full resolution image was captured.\n\
00497 \n\
00498 uint32 x_offset  # Leftmost pixel of the ROI\n\
00499                  # (0 if the ROI includes the left edge of the image)\n\
00500 uint32 y_offset  # Topmost pixel of the ROI\n\
00501                  # (0 if the ROI includes the top edge of the image)\n\
00502 uint32 height    # Height of ROI\n\
00503 uint32 width     # Width of ROI\n\
00504 \n\
00505 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00506 # ROI in this message. Typically this should be False if the full image\n\
00507 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00508 # used).\n\
00509 bool do_rectify\n\
00510 \n\
00511 ================================================================================\n\
00512 MSG: geometry_msgs/Vector3\n\
00513 # This represents a vector in free space. \n\
00514 \n\
00515 float64 x\n\
00516 float64 y\n\
00517 float64 z\n\
00518 ";
00519   }
00520 
00521   static const char* value(const  ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 
00522 };
00523 
00524 } // namespace message_traits
00525 } // namespace ros
00526 
00527 namespace ros
00528 {
00529 namespace serialization
00530 {
00531 
00532 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >
00533 {
00534   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00535   {
00536     stream.next(m.objectid);
00537     stream.next(m.object);
00538     stream.next(m.pose);
00539     stream.next(m.boundingbox);
00540   }
00541 
00542   ROS_DECLARE_ALLINONE_SERIALIZER;
00543 }; // struct PickPlaceObject_
00544 } // namespace serialization
00545 } // namespace ros
00546 
00547 namespace ros
00548 {
00549 namespace message_operations
00550 {
00551 
00552 template<class ContainerAllocator>
00553 struct Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >
00554 {
00555   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v) 
00556   {
00557     s << indent << "objectid: ";
00558     Printer<int32_t>::stream(s, indent + "  ", v.objectid);
00559     s << indent << "object: ";
00560 s << std::endl;
00561     Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + "  ", v.object);
00562     s << indent << "pose: ";
00563 s << std::endl;
00564     Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + "  ", v.pose);
00565     s << indent << "boundingbox[]" << std::endl;
00566     for (size_t i = 0; i < v.boundingbox.size(); ++i)
00567     {
00568       s << indent << "  boundingbox[" << i << "]: ";
00569       Printer<double>::stream(s, indent + "  ", v.boundingbox[i]);
00570     }
00571   }
00572 };
00573 
00574 
00575 } // namespace message_operations
00576 } // namespace ros
00577 
00578 #endif // PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
00579 


pr2_pick_and_place_service
Author(s): Sarah Osentoski
autogenerated on Sun Jan 5 2014 11:28:37