00001
00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
00003 #define PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019
00020
00021 #include "pr2_pick_and_place_service/PickPlaceObject.h"
00022
00023 namespace pr2_pick_and_place_service
00024 {
00025 template <class ContainerAllocator>
00026 struct DetectObjectsRequest_ {
00027 typedef DetectObjectsRequest_<ContainerAllocator> Type;
00028
00029 DetectObjectsRequest_()
00030 : command()
00031 {
00032 }
00033
00034 DetectObjectsRequest_(const ContainerAllocator& _alloc)
00035 : command(_alloc)
00036 {
00037 }
00038
00039 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _command_type;
00040 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > command;
00041
00042
00043 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > Ptr;
00044 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> const> ConstPtr;
00045 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00046 };
00047 typedef ::pr2_pick_and_place_service::DetectObjectsRequest_<std::allocator<void> > DetectObjectsRequest;
00048
00049 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest> DetectObjectsRequestPtr;
00050 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest const> DetectObjectsRequestConstPtr;
00051
00052
00053 template <class ContainerAllocator>
00054 struct DetectObjectsResponse_ {
00055 typedef DetectObjectsResponse_<ContainerAllocator> Type;
00056
00057 DetectObjectsResponse_()
00058 : objects()
00059 {
00060 }
00061
00062 DetectObjectsResponse_(const ContainerAllocator& _alloc)
00063 : objects(_alloc)
00064 {
00065 }
00066
00067 typedef std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > _objects_type;
00068 std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > objects;
00069
00070
00071 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > Ptr;
00072 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> const> ConstPtr;
00073 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00074 };
00075 typedef ::pr2_pick_and_place_service::DetectObjectsResponse_<std::allocator<void> > DetectObjectsResponse;
00076
00077 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse> DetectObjectsResponsePtr;
00078 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse const> DetectObjectsResponseConstPtr;
00079
00080 struct DetectObjects
00081 {
00082
00083 typedef DetectObjectsRequest Request;
00084 typedef DetectObjectsResponse Response;
00085 Request request;
00086 Response response;
00087
00088 typedef Request RequestType;
00089 typedef Response ResponseType;
00090 };
00091 }
00092
00093 namespace ros
00094 {
00095 namespace message_traits
00096 {
00097 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > : public TrueType {};
00098 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> const> : public TrueType {};
00099 template<class ContainerAllocator>
00100 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00101 static const char* value()
00102 {
00103 return "cba5e21e920a3a2b7b375cb65b64cdea";
00104 }
00105
00106 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00107 static const uint64_t static_value1 = 0xcba5e21e920a3a2bULL;
00108 static const uint64_t static_value2 = 0x7b375cb65b64cdeaULL;
00109 };
00110
00111 template<class ContainerAllocator>
00112 struct DataType< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00113 static const char* value()
00114 {
00115 return "pr2_pick_and_place_service/DetectObjectsRequest";
00116 }
00117
00118 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00119 };
00120
00121 template<class ContainerAllocator>
00122 struct Definition< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00123 static const char* value()
00124 {
00125 return "string command\n\
00126 \n\
00127 ";
00128 }
00129
00130 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00131 };
00132
00133 }
00134 }
00135
00136
00137 namespace ros
00138 {
00139 namespace message_traits
00140 {
00141 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > : public TrueType {};
00142 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> const> : public TrueType {};
00143 template<class ContainerAllocator>
00144 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00145 static const char* value()
00146 {
00147 return "449f83591eb66e6fe03617927c047c54";
00148 }
00149
00150 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00151 static const uint64_t static_value1 = 0x449f83591eb66e6fULL;
00152 static const uint64_t static_value2 = 0xe03617927c047c54ULL;
00153 };
00154
00155 template<class ContainerAllocator>
00156 struct DataType< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00157 static const char* value()
00158 {
00159 return "pr2_pick_and_place_service/DetectObjectsResponse";
00160 }
00161
00162 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00163 };
00164
00165 template<class ContainerAllocator>
00166 struct Definition< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00167 static const char* value()
00168 {
00169 return "PickPlaceObject[] objects\n\
00170 \n\
00171 \n\
00172 ================================================================================\n\
00173 MSG: pr2_pick_and_place_service/PickPlaceObject\n\
00174 int32 objectid\n\
00175 object_manipulation_msgs/GraspableObject object\n\
00176 geometry_msgs/PoseStamped pose\n\
00177 float64[] boundingbox\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: object_manipulation_msgs/GraspableObject\n\
00181 # an object that the object_manipulator can work on\n\
00182 \n\
00183 # a graspable object can be represented in multiple ways. This message\n\
00184 # can contain all of them. Which one is actually used is up to the receiver\n\
00185 # of this message. When adding new representations, one must be careful that\n\
00186 # they have reasonable lightweight defaults indicating that that particular\n\
00187 # representation is not available.\n\
00188 \n\
00189 # the tf frame to be used as a reference frame when combining information from\n\
00190 # the different representations below\n\
00191 string reference_frame_id\n\
00192 \n\
00193 # potential recognition results from a database of models\n\
00194 # all poses are relative to the object reference pose\n\
00195 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00196 \n\
00197 # the point cloud itself\n\
00198 sensor_msgs/PointCloud cluster\n\
00199 \n\
00200 # a region of a PointCloud2 of interest\n\
00201 object_manipulation_msgs/SceneRegion region\n\
00202 \n\
00203 # the name that this object has in the collision environment\n\
00204 string collision_name\n\
00205 ================================================================================\n\
00206 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00207 # Informs that a specific model from the Model Database has been \n\
00208 # identified at a certain location\n\
00209 \n\
00210 # the database id of the model\n\
00211 int32 model_id\n\
00212 \n\
00213 # the pose that it can be found in\n\
00214 geometry_msgs/PoseStamped pose\n\
00215 \n\
00216 # a measure of the confidence level in this detection result\n\
00217 float32 confidence\n\
00218 \n\
00219 # the name of the object detector that generated this detection result\n\
00220 string detector_name\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: geometry_msgs/PoseStamped\n\
00224 # A Pose with reference coordinate frame and timestamp\n\
00225 Header header\n\
00226 Pose pose\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: std_msgs/Header\n\
00230 # Standard metadata for higher-level stamped data types.\n\
00231 # This is generally used to communicate timestamped data \n\
00232 # in a particular coordinate frame.\n\
00233 # \n\
00234 # sequence ID: consecutively increasing ID \n\
00235 uint32 seq\n\
00236 #Two-integer timestamp that is expressed as:\n\
00237 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00238 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00239 # time-handling sugar is provided by the client library\n\
00240 time stamp\n\
00241 #Frame this data is associated with\n\
00242 # 0: no frame\n\
00243 # 1: global frame\n\
00244 string frame_id\n\
00245 \n\
00246 ================================================================================\n\
00247 MSG: geometry_msgs/Pose\n\
00248 # A representation of pose in free space, composed of postion and orientation. \n\
00249 Point position\n\
00250 Quaternion orientation\n\
00251 \n\
00252 ================================================================================\n\
00253 MSG: geometry_msgs/Point\n\
00254 # This contains the position of a point in free space\n\
00255 float64 x\n\
00256 float64 y\n\
00257 float64 z\n\
00258 \n\
00259 ================================================================================\n\
00260 MSG: geometry_msgs/Quaternion\n\
00261 # This represents an orientation in free space in quaternion form.\n\
00262 \n\
00263 float64 x\n\
00264 float64 y\n\
00265 float64 z\n\
00266 float64 w\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: sensor_msgs/PointCloud\n\
00270 # This message holds a collection of 3d points, plus optional additional\n\
00271 # information about each point.\n\
00272 \n\
00273 # Time of sensor data acquisition, coordinate frame ID.\n\
00274 Header header\n\
00275 \n\
00276 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00277 # in the frame given in the header.\n\
00278 geometry_msgs/Point32[] points\n\
00279 \n\
00280 # Each channel should have the same number of elements as points array,\n\
00281 # and the data in each channel should correspond 1:1 with each point.\n\
00282 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00283 ChannelFloat32[] channels\n\
00284 \n\
00285 ================================================================================\n\
00286 MSG: geometry_msgs/Point32\n\
00287 # This contains the position of a point in free space(with 32 bits of precision).\n\
00288 # It is recommeded to use Point wherever possible instead of Point32. \n\
00289 # \n\
00290 # This recommendation is to promote interoperability. \n\
00291 #\n\
00292 # This message is designed to take up less space when sending\n\
00293 # lots of points at once, as in the case of a PointCloud. \n\
00294 \n\
00295 float32 x\n\
00296 float32 y\n\
00297 float32 z\n\
00298 ================================================================================\n\
00299 MSG: sensor_msgs/ChannelFloat32\n\
00300 # This message is used by the PointCloud message to hold optional data\n\
00301 # associated with each point in the cloud. The length of the values\n\
00302 # array should be the same as the length of the points array in the\n\
00303 # PointCloud, and each value should be associated with the corresponding\n\
00304 # point.\n\
00305 \n\
00306 # Channel names in existing practice include:\n\
00307 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00308 # This is opposite to usual conventions but remains for\n\
00309 # historical reasons. The newer PointCloud2 message has no\n\
00310 # such problem.\n\
00311 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00312 # (R,G,B) values packed into the least significant 24 bits,\n\
00313 # in order.\n\
00314 # \"intensity\" - laser or pixel intensity.\n\
00315 # \"distance\"\n\
00316 \n\
00317 # The channel name should give semantics of the channel (e.g.\n\
00318 # \"intensity\" instead of \"value\").\n\
00319 string name\n\
00320 \n\
00321 # The values array should be 1-1 with the elements of the associated\n\
00322 # PointCloud.\n\
00323 float32[] values\n\
00324 \n\
00325 ================================================================================\n\
00326 MSG: object_manipulation_msgs/SceneRegion\n\
00327 # Point cloud\n\
00328 sensor_msgs/PointCloud2 cloud\n\
00329 \n\
00330 # Indices for the region of interest\n\
00331 int32[] mask\n\
00332 \n\
00333 # One of the corresponding 2D images, if applicable\n\
00334 sensor_msgs/Image image\n\
00335 \n\
00336 # The disparity image, if applicable\n\
00337 sensor_msgs/Image disparity_image\n\
00338 \n\
00339 # Camera info for the camera that took the image\n\
00340 sensor_msgs/CameraInfo cam_info\n\
00341 \n\
00342 # a 3D region of interest for grasp planning\n\
00343 geometry_msgs/PoseStamped roi_box_pose\n\
00344 geometry_msgs/Vector3 roi_box_dims\n\
00345 \n\
00346 ================================================================================\n\
00347 MSG: sensor_msgs/PointCloud2\n\
00348 # This message holds a collection of N-dimensional points, which may\n\
00349 # contain additional information such as normals, intensity, etc. The\n\
00350 # point data is stored as a binary blob, its layout described by the\n\
00351 # contents of the \"fields\" array.\n\
00352 \n\
00353 # The point cloud data may be organized 2d (image-like) or 1d\n\
00354 # (unordered). Point clouds organized as 2d images may be produced by\n\
00355 # camera depth sensors such as stereo or time-of-flight.\n\
00356 \n\
00357 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00358 # points).\n\
00359 Header header\n\
00360 \n\
00361 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00362 # 1 and width is the length of the point cloud.\n\
00363 uint32 height\n\
00364 uint32 width\n\
00365 \n\
00366 # Describes the channels and their layout in the binary data blob.\n\
00367 PointField[] fields\n\
00368 \n\
00369 bool is_bigendian # Is this data bigendian?\n\
00370 uint32 point_step # Length of a point in bytes\n\
00371 uint32 row_step # Length of a row in bytes\n\
00372 uint8[] data # Actual point data, size is (row_step*height)\n\
00373 \n\
00374 bool is_dense # True if there are no invalid points\n\
00375 \n\
00376 ================================================================================\n\
00377 MSG: sensor_msgs/PointField\n\
00378 # This message holds the description of one point entry in the\n\
00379 # PointCloud2 message format.\n\
00380 uint8 INT8 = 1\n\
00381 uint8 UINT8 = 2\n\
00382 uint8 INT16 = 3\n\
00383 uint8 UINT16 = 4\n\
00384 uint8 INT32 = 5\n\
00385 uint8 UINT32 = 6\n\
00386 uint8 FLOAT32 = 7\n\
00387 uint8 FLOAT64 = 8\n\
00388 \n\
00389 string name # Name of field\n\
00390 uint32 offset # Offset from start of point struct\n\
00391 uint8 datatype # Datatype enumeration, see above\n\
00392 uint32 count # How many elements in the field\n\
00393 \n\
00394 ================================================================================\n\
00395 MSG: sensor_msgs/Image\n\
00396 # This message contains an uncompressed image\n\
00397 # (0, 0) is at top-left corner of image\n\
00398 #\n\
00399 \n\
00400 Header header # Header timestamp should be acquisition time of image\n\
00401 # Header frame_id should be optical frame of camera\n\
00402 # origin of frame should be optical center of cameara\n\
00403 # +x should point to the right in the image\n\
00404 # +y should point down in the image\n\
00405 # +z should point into to plane of the image\n\
00406 # If the frame_id here and the frame_id of the CameraInfo\n\
00407 # message associated with the image conflict\n\
00408 # the behavior is undefined\n\
00409 \n\
00410 uint32 height # image height, that is, number of rows\n\
00411 uint32 width # image width, that is, number of columns\n\
00412 \n\
00413 # The legal values for encoding are in file src/image_encodings.cpp\n\
00414 # If you want to standardize a new string format, join\n\
00415 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00416 \n\
00417 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00418 # taken from the list of strings in src/image_encodings.cpp\n\
00419 \n\
00420 uint8 is_bigendian # is this data bigendian?\n\
00421 uint32 step # Full row length in bytes\n\
00422 uint8[] data # actual matrix data, size is (step * rows)\n\
00423 \n\
00424 ================================================================================\n\
00425 MSG: sensor_msgs/CameraInfo\n\
00426 # This message defines meta information for a camera. It should be in a\n\
00427 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00428 # image topics named:\n\
00429 #\n\
00430 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00431 # image - monochrome, distorted\n\
00432 # image_color - color, distorted\n\
00433 # image_rect - monochrome, rectified\n\
00434 # image_rect_color - color, rectified\n\
00435 #\n\
00436 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00437 # for producing the four processed image topics from image_raw and\n\
00438 # camera_info. The meaning of the camera parameters are described in\n\
00439 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00440 #\n\
00441 # The image_geometry package provides a user-friendly interface to\n\
00442 # common operations using this meta information. If you want to, e.g.,\n\
00443 # project a 3d point into image coordinates, we strongly recommend\n\
00444 # using image_geometry.\n\
00445 #\n\
00446 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00447 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00448 # indicates an uncalibrated camera.\n\
00449 \n\
00450 #######################################################################\n\
00451 # Image acquisition info #\n\
00452 #######################################################################\n\
00453 \n\
00454 # Time of image acquisition, camera coordinate frame ID\n\
00455 Header header # Header timestamp should be acquisition time of image\n\
00456 # Header frame_id should be optical frame of camera\n\
00457 # origin of frame should be optical center of camera\n\
00458 # +x should point to the right in the image\n\
00459 # +y should point down in the image\n\
00460 # +z should point into the plane of the image\n\
00461 \n\
00462 \n\
00463 #######################################################################\n\
00464 # Calibration Parameters #\n\
00465 #######################################################################\n\
00466 # These are fixed during camera calibration. Their values will be the #\n\
00467 # same in all messages until the camera is recalibrated. Note that #\n\
00468 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00469 # #\n\
00470 # The internal parameters can be used to warp a raw (distorted) image #\n\
00471 # to: #\n\
00472 # 1. An undistorted image (requires D and K) #\n\
00473 # 2. A rectified image (requires D, K, R) #\n\
00474 # The projection matrix P projects 3D points into the rectified image.#\n\
00475 #######################################################################\n\
00476 \n\
00477 # The image dimensions with which the camera was calibrated. Normally\n\
00478 # this will be the full camera resolution in pixels.\n\
00479 uint32 height\n\
00480 uint32 width\n\
00481 \n\
00482 # The distortion model used. Supported models are listed in\n\
00483 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00484 # simple model of radial and tangential distortion - is sufficent.\n\
00485 string distortion_model\n\
00486 \n\
00487 # The distortion parameters, size depending on the distortion model.\n\
00488 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00489 float64[] D\n\
00490 \n\
00491 # Intrinsic camera matrix for the raw (distorted) images.\n\
00492 # [fx 0 cx]\n\
00493 # K = [ 0 fy cy]\n\
00494 # [ 0 0 1]\n\
00495 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00496 # coordinates using the focal lengths (fx, fy) and principal point\n\
00497 # (cx, cy).\n\
00498 float64[9] K # 3x3 row-major matrix\n\
00499 \n\
00500 # Rectification matrix (stereo cameras only)\n\
00501 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00502 # stereo image plane so that epipolar lines in both stereo images are\n\
00503 # parallel.\n\
00504 float64[9] R # 3x3 row-major matrix\n\
00505 \n\
00506 # Projection/camera matrix\n\
00507 # [fx' 0 cx' Tx]\n\
00508 # P = [ 0 fy' cy' Ty]\n\
00509 # [ 0 0 1 0]\n\
00510 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00511 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00512 # is the normal camera intrinsic matrix for the rectified image.\n\
00513 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00514 # coordinates using the focal lengths (fx', fy') and principal point\n\
00515 # (cx', cy') - these may differ from the values in K.\n\
00516 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00517 # also have R = the identity and P[1:3,1:3] = K.\n\
00518 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00519 # position of the optical center of the second camera in the first\n\
00520 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00521 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00522 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00523 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00524 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00525 # the rectified image is given by:\n\
00526 # [u v w]' = P * [X Y Z 1]'\n\
00527 # x = u / w\n\
00528 # y = v / w\n\
00529 # This holds for both images of a stereo pair.\n\
00530 float64[12] P # 3x4 row-major matrix\n\
00531 \n\
00532 \n\
00533 #######################################################################\n\
00534 # Operational Parameters #\n\
00535 #######################################################################\n\
00536 # These define the image region actually captured by the camera #\n\
00537 # driver. Although they affect the geometry of the output image, they #\n\
00538 # may be changed freely without recalibrating the camera. #\n\
00539 #######################################################################\n\
00540 \n\
00541 # Binning refers here to any camera setting which combines rectangular\n\
00542 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00543 # resolution of the output image to\n\
00544 # (width / binning_x) x (height / binning_y).\n\
00545 # The default values binning_x = binning_y = 0 is considered the same\n\
00546 # as binning_x = binning_y = 1 (no subsampling).\n\
00547 uint32 binning_x\n\
00548 uint32 binning_y\n\
00549 \n\
00550 # Region of interest (subwindow of full camera resolution), given in\n\
00551 # full resolution (unbinned) image coordinates. A particular ROI\n\
00552 # always denotes the same window of pixels on the camera sensor,\n\
00553 # regardless of binning settings.\n\
00554 # The default setting of roi (all values 0) is considered the same as\n\
00555 # full resolution (roi.width = width, roi.height = height).\n\
00556 RegionOfInterest roi\n\
00557 \n\
00558 ================================================================================\n\
00559 MSG: sensor_msgs/RegionOfInterest\n\
00560 # This message is used to specify a region of interest within an image.\n\
00561 #\n\
00562 # When used to specify the ROI setting of the camera when the image was\n\
00563 # taken, the height and width fields should either match the height and\n\
00564 # width fields for the associated image; or height = width = 0\n\
00565 # indicates that the full resolution image was captured.\n\
00566 \n\
00567 uint32 x_offset # Leftmost pixel of the ROI\n\
00568 # (0 if the ROI includes the left edge of the image)\n\
00569 uint32 y_offset # Topmost pixel of the ROI\n\
00570 # (0 if the ROI includes the top edge of the image)\n\
00571 uint32 height # Height of ROI\n\
00572 uint32 width # Width of ROI\n\
00573 \n\
00574 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00575 # ROI in this message. Typically this should be False if the full image\n\
00576 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00577 # used).\n\
00578 bool do_rectify\n\
00579 \n\
00580 ================================================================================\n\
00581 MSG: geometry_msgs/Vector3\n\
00582 # This represents a vector in free space. \n\
00583 \n\
00584 float64 x\n\
00585 float64 y\n\
00586 float64 z\n\
00587 ";
00588 }
00589
00590 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00591 };
00592
00593 }
00594 }
00595
00596 namespace ros
00597 {
00598 namespace serialization
00599 {
00600
00601 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> >
00602 {
00603 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00604 {
00605 stream.next(m.command);
00606 }
00607
00608 ROS_DECLARE_ALLINONE_SERIALIZER;
00609 };
00610 }
00611 }
00612
00613
00614 namespace ros
00615 {
00616 namespace serialization
00617 {
00618
00619 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> >
00620 {
00621 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00622 {
00623 stream.next(m.objects);
00624 }
00625
00626 ROS_DECLARE_ALLINONE_SERIALIZER;
00627 };
00628 }
00629 }
00630
00631 namespace ros
00632 {
00633 namespace service_traits
00634 {
00635 template<>
00636 struct MD5Sum<pr2_pick_and_place_service::DetectObjects> {
00637 static const char* value()
00638 {
00639 return "bf02022b441a7c39aeac8629d3839eb0";
00640 }
00641
00642 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); }
00643 };
00644
00645 template<>
00646 struct DataType<pr2_pick_and_place_service::DetectObjects> {
00647 static const char* value()
00648 {
00649 return "pr2_pick_and_place_service/DetectObjects";
00650 }
00651
00652 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); }
00653 };
00654
00655 template<class ContainerAllocator>
00656 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00657 static const char* value()
00658 {
00659 return "bf02022b441a7c39aeac8629d3839eb0";
00660 }
00661
00662 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00663 };
00664
00665 template<class ContainerAllocator>
00666 struct DataType<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00667 static const char* value()
00668 {
00669 return "pr2_pick_and_place_service/DetectObjects";
00670 }
00671
00672 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00673 };
00674
00675 template<class ContainerAllocator>
00676 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00677 static const char* value()
00678 {
00679 return "bf02022b441a7c39aeac8629d3839eb0";
00680 }
00681
00682 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00683 };
00684
00685 template<class ContainerAllocator>
00686 struct DataType<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00687 static const char* value()
00688 {
00689 return "pr2_pick_and_place_service/DetectObjects";
00690 }
00691
00692 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00693 };
00694
00695 }
00696 }
00697
00698 #endif // PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
00699