Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00042 #include "dmp/dmp.h"
00043 using namespace std;
00044
00045 namespace dmp{
00046
00047 #define MAX_PLAN_LENGTH 1000
00048
00049 double alpha = -log(0.01);
00050
00057 double calcPhase(double curr_time, double tau)
00058 {
00059 return exp(-(alpha/tau)*curr_time);
00060 }
00061
00062
00071 void learnFromDemo(const DMPTraj &demo,
00072 const vector<double> &k_gains,
00073 const vector<double> &d_gains,
00074 const int &num_bases,
00075 vector<DMPData> &dmp_list)
00076 {
00077
00078 int n_pts = demo.points.size();
00079 if(n_pts < 1){
00080 ROS_ERROR("Empty trajectory passed to learn_dmp_from_demo service!");
00081 return;
00082 }
00083 int dims = demo.points[0].positions.size();
00084 double tau = demo.times[n_pts-1];
00085
00086 double *x_demo = new double[n_pts];
00087 double *v_demo = new double[n_pts];
00088 double *v_dot_demo = new double[n_pts];
00089 double *f_domain = new double[n_pts];
00090 double *f_targets = new double[n_pts];
00091 FunctionApprox *f_approx = new FourierApprox(num_bases);
00092
00093
00094 for(int d=0; d<dims; d++){
00095 double curr_k = k_gains[d];
00096 double curr_d = d_gains[d];
00097 double x_0 = demo.points[0].positions[d];
00098 double goal = demo.points[n_pts-1].positions[d];
00099 x_demo[0] = demo.points[0].positions[d];
00100 v_demo[0] = 0;
00101 v_dot_demo[0] = 0;
00102
00103
00104 for(int i=1; i<n_pts; i++){
00105 x_demo[i] = demo.points[i].positions[d];
00106 double dx = x_demo[i] - x_demo[i-1];
00107 double dt = demo.times[i] - demo.times[i-1];
00108 v_demo[i] = dx/dt;
00109 v_dot_demo[i] = (v_demo[i] - v_demo[i-1]) / dt;
00110 }
00111
00112
00113 for(int i=0; i<n_pts; i++){
00114 double phase = calcPhase(demo.times[i],tau);
00115 f_domain[i] = demo.times[i]/tau;
00116 f_targets[i] = ((tau*tau*v_dot_demo[i] + curr_d*tau*v_demo[i]) / curr_k) - (goal-x_demo[i]) + ((goal-x_0)*phase);
00117 f_targets[i] /= phase;
00118 }
00119
00120
00121 f_approx->leastSquaresWeights(f_domain, f_targets, n_pts);
00122
00123
00124 DMPData *curr_dmp = new DMPData();
00125 curr_dmp->weights = f_approx->getWeights();
00126 curr_dmp->k_gain = curr_k;
00127 curr_dmp->d_gain = curr_d;
00128 dmp_list.push_back(*curr_dmp);
00129 }
00130
00131 delete[] x_demo;
00132 delete[] v_demo;
00133 delete[] v_dot_demo;
00134 delete[] f_domain;
00135 delete[] f_targets;
00136 delete f_approx;
00137 }
00138
00139
00140
00156 void generatePlan(const vector<DMPData> &dmp_list,
00157 const vector<double> &x_0,
00158 const vector<double> &x_dot_0,
00159 const double &t_0,
00160 const vector<double> &goal,
00161 const vector<double> &goal_thresh,
00162 const double &seg_length,
00163 const double &tau,
00164 const double &total_dt,
00165 const int &integrate_iter,
00166 DMPTraj &plan,
00167 uint8_t &at_goal)
00168 {
00169 plan.points.clear();
00170 plan.times.clear();
00171 at_goal = false;
00172
00173 int dims = dmp_list.size();
00174 int n_pts = 0;
00175 double dt = total_dt / integrate_iter;
00176
00177 vector<double> *x_vecs, *x_dot_vecs;
00178 vector<double> t_vec;
00179 x_vecs = new vector<double>[dims];
00180 x_dot_vecs = new vector<double>[dims];
00181 FunctionApprox **f = new FunctionApprox*[dims];
00182
00183 for(int i=0; i<dims; i++)
00184 f[i] = new FourierApprox(dmp_list[i].weights);
00185
00186 double t = 0;
00187 double f_eval;
00188
00189
00190
00191
00192 bool seg_end = false;
00193 while(((t+t_0) < tau || (!at_goal && t<MAX_PLAN_LENGTH)) && !seg_end){
00194
00195 if(seg_length > 0){
00196 if (t > seg_length) seg_end = true;
00197 }
00198
00199
00200 for(int i=0; i<dims; i++){
00201 double x,v;
00202 if(n_pts==0){
00203 x = x_0[i];
00204 v = x_dot_0[i];
00205 }
00206 else{
00207 x = x_vecs[i][n_pts-1];
00208 v = x_dot_vecs[i][n_pts-1] * tau;
00209 }
00210
00211
00212 for(int iter=0; iter<integrate_iter; iter++)
00213 {
00214
00215
00216 double s = calcPhase((t+t_0) + (dt*iter), tau);
00217 double log_s = (t+t_0)/tau;
00218 if(log_s >= 1.0){
00219 f_eval = 0;
00220 }
00221 else{
00222 f_eval = f[i]->evalAt(log_s) * s;
00223 }
00224
00225
00226 double v_dot = (dmp_list[i].k_gain*((goal[i]-x) - (goal[i]-x_0[i])*s + f_eval) - dmp_list[i].d_gain*v) / tau;
00227 double x_dot = v/tau;
00228
00229
00230 v += v_dot * dt;
00231 x += x_dot * dt;
00232 }
00233
00234
00235 x_vecs[i].push_back(x);
00236 x_dot_vecs[i].push_back(v/tau);
00237 }
00238 t += total_dt;
00239 t_vec.push_back(t);
00240 n_pts++;
00241
00242
00243 if((t+t_0) >= tau){
00244 at_goal = true;
00245 for(int i=0; i<dims; i++){
00246 if(goal_thresh[i] > 0){
00247 if(fabs(x_vecs[i][n_pts-1] - goal[i]) > goal_thresh[i])
00248 at_goal = false;
00249 }
00250 }
00251 }
00252 }
00253
00254
00255 plan.points.resize(n_pts);
00256 for(int j=0; j<n_pts; j++){
00257 plan.points[j].positions.resize(dims);
00258 plan.points[j].velocities.resize(dims);
00259 }
00260 for(int i=0; i<dims; i++){
00261 for(int j=0; j<n_pts; j++){
00262 plan.points[j].positions[i] = x_vecs[i][j];
00263 plan.points[j].velocities[i] = x_dot_vecs[i][j];
00264 }
00265 }
00266 plan.times = t_vec;
00267
00268
00269 for(int i=0; i<dims; i++){
00270 delete f[i];
00271 }
00272 delete[] f;
00273 delete[] x_vecs;
00274 delete[] x_dot_vecs;
00275 }
00276
00277 }
00278