jcdctmgr.c
Go to the documentation of this file.
1 /*
2  * jcdctmgr.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the forward-DCT management logic.
9  * This code selects a particular DCT implementation to be used,
10  * and it performs related housekeeping chores including coefficient
11  * quantization.
12  */
13 
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
17 #include "jdct.h" /* Private declarations for DCT subsystem */
18 
19 
20 /* Private subobject for this module */
21 
22 typedef struct {
23  struct jpeg_forward_dct pub; /* public fields */
24 
25  /* Pointer to the DCT routine actually in use */
26  forward_DCT_method_ptr do_dct;
27 
28  /* The actual post-DCT divisors --- not identical to the quant table
29  * entries, because of scaling (especially for an unnormalized DCT).
30  * Each table is given in normal array order.
31  */
32  DCTELEM * divisors[NUM_QUANT_TBLS];
33 
34 #ifdef DCT_FLOAT_SUPPORTED
35  /* Same as above for the floating-point case. */
36  float_DCT_method_ptr do_float_dct;
37  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
38 #endif
40 
42 
43 
44 /*
45  * Initialize for a processing pass.
46  * Verify that all referenced Q-tables are present, and set up
47  * the divisor table for each one.
48  * In the current implementation, DCT of all components is done during
49  * the first pass, even if only some components will be output in the
50  * first scan. Hence all components should be examined here.
51  */
52 
53 METHODDEF(void)
55 {
56  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
57  int ci, qtblno, i;
59  JQUANT_TBL * qtbl;
60  DCTELEM * dtbl;
61 
62  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
63  ci++, compptr++) {
64  qtblno = compptr->quant_tbl_no;
65  /* Make sure specified quantization table is present */
66  if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
67  cinfo->quant_tbl_ptrs[qtblno] == NULL)
68  ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
69  qtbl = cinfo->quant_tbl_ptrs[qtblno];
70  /* Compute divisors for this quant table */
71  /* We may do this more than once for same table, but it's not a big deal */
72  switch (cinfo->dct_method) {
73 #ifdef DCT_ISLOW_SUPPORTED
74  case JDCT_ISLOW:
75  /* For LL&M IDCT method, divisors are equal to raw quantization
76  * coefficients multiplied by 8 (to counteract scaling).
77  */
78  if (fdct->divisors[qtblno] == NULL) {
79  fdct->divisors[qtblno] = (DCTELEM *)
80  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
82  }
83  dtbl = fdct->divisors[qtblno];
84  for (i = 0; i < DCTSIZE2; i++) {
85  dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
86  }
87  break;
88 #endif
89 #ifdef DCT_IFAST_SUPPORTED
90  case JDCT_IFAST:
91  {
92  /* For AA&N IDCT method, divisors are equal to quantization
93  * coefficients scaled by scalefactor[row]*scalefactor[col], where
94  * scalefactor[0] = 1
95  * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
96  * We apply a further scale factor of 8.
97  */
98 #define CONST_BITS 14
99  static const INT16 aanscales[DCTSIZE2] = {
100  /* precomputed values scaled up by 14 bits */
101  16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
102  22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
103  21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
104  19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
105  16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
106  12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
107  8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
108  4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
109  };
111 
112  if (fdct->divisors[qtblno] == NULL) {
113  fdct->divisors[qtblno] = (DCTELEM *)
114  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
115  DCTSIZE2 * SIZEOF(DCTELEM));
116  }
117  dtbl = fdct->divisors[qtblno];
118  for (i = 0; i < DCTSIZE2; i++) {
119  dtbl[i] = (DCTELEM)
120  DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
121  (INT32) aanscales[i]),
122  CONST_BITS-3);
123  }
124  }
125  break;
126 #endif
127 #ifdef DCT_FLOAT_SUPPORTED
128  case JDCT_FLOAT:
129  {
130  /* For float AA&N IDCT method, divisors are equal to quantization
131  * coefficients scaled by scalefactor[row]*scalefactor[col], where
132  * scalefactor[0] = 1
133  * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
134  * We apply a further scale factor of 8.
135  * What's actually stored is 1/divisor so that the inner loop can
136  * use a multiplication rather than a division.
137  */
138  FAST_FLOAT * fdtbl;
139  int row, col;
140  static const double aanscalefactor[DCTSIZE] = {
141  1.0, 1.387039845, 1.306562965, 1.175875602,
142  1.0, 0.785694958, 0.541196100, 0.275899379
143  };
144 
145  if (fdct->float_divisors[qtblno] == NULL) {
146  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
147  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148  DCTSIZE2 * SIZEOF(FAST_FLOAT));
149  }
150  fdtbl = fdct->float_divisors[qtblno];
151  i = 0;
152  for (row = 0; row < DCTSIZE; row++) {
153  for (col = 0; col < DCTSIZE; col++) {
154  fdtbl[i] = (FAST_FLOAT)
155  (1.0 / (((double) qtbl->quantval[i] *
156  aanscalefactor[row] * aanscalefactor[col] * 8.0)));
157  i++;
158  }
159  }
160  }
161  break;
162 #endif
163  default:
164  ERREXIT(cinfo, JERR_NOT_COMPILED);
165  break;
166  }
167  }
168 }
169 
170 
171 /*
172  * Perform forward DCT on one or more blocks of a component.
173  *
174  * The input samples are taken from the sample_data[] array starting at
175  * position start_row/start_col, and moving to the right for any additional
176  * blocks. The quantized coefficients are returned in coef_blocks[].
177  */
178 
179 METHODDEF(void)
181  JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
182  JDIMENSION start_row, JDIMENSION start_col,
184 /* This version is used for integer DCT implementations. */
185 {
186  /* This routine is heavily used, so it's worth coding it tightly. */
187  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
188  forward_DCT_method_ptr do_dct = fdct->do_dct;
189  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
190  DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
191  JDIMENSION bi;
192 
193  sample_data += start_row; /* fold in the vertical offset once */
194 
195  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
196  /* Load data into workspace, applying unsigned->signed conversion */
197  { register DCTELEM *workspaceptr;
198  register JSAMPROW elemptr;
199  register int elemr;
200 
201  workspaceptr = workspace;
202  for (elemr = 0; elemr < DCTSIZE; elemr++) {
203  elemptr = sample_data[elemr] + start_col;
204 #if DCTSIZE == 8 /* unroll the inner loop */
205  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
206  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 #else
214  { register int elemc;
215  for (elemc = DCTSIZE; elemc > 0; elemc--) {
216  *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
217  }
218  }
219 #endif
220  }
221  }
222 
223  /* Perform the DCT */
224  (*do_dct) (workspace);
225 
226  /* Quantize/descale the coefficients, and store into coef_blocks[] */
227  { register DCTELEM temp, qval;
228  register int i;
229  register JCOEFPTR output_ptr = coef_blocks[bi];
230 
231  for (i = 0; i < DCTSIZE2; i++) {
232  qval = divisors[i];
233  temp = workspace[i];
234  /* Divide the coefficient value by qval, ensuring proper rounding.
235  * Since C does not specify the direction of rounding for negative
236  * quotients, we have to force the dividend positive for portability.
237  *
238  * In most files, at least half of the output values will be zero
239  * (at default quantization settings, more like three-quarters...)
240  * so we should ensure that this case is fast. On many machines,
241  * a comparison is enough cheaper than a divide to make a special test
242  * a win. Since both inputs will be nonnegative, we need only test
243  * for a < b to discover whether a/b is 0.
244  * If your machine's division is fast enough, define FAST_DIVIDE.
245  */
246 #ifdef FAST_DIVIDE
247 #define DIVIDE_BY(a,b) a /= b
248 #else
249 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
250 #endif
251  if (temp < 0) {
252  temp = -temp;
253  temp += qval>>1; /* for rounding */
254  DIVIDE_BY(temp, qval);
255  temp = -temp;
256  } else {
257  temp += qval>>1; /* for rounding */
258  DIVIDE_BY(temp, qval);
259  }
260  output_ptr[i] = (JCOEF) temp;
261  }
262  }
263  }
264 }
265 
266 
267 #ifdef DCT_FLOAT_SUPPORTED
268 
269 METHODDEF(void)
271  JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
272  JDIMENSION start_row, JDIMENSION start_col,
274 /* This version is used for floating-point DCT implementations. */
275 {
276  /* This routine is heavily used, so it's worth coding it tightly. */
277  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
278  float_DCT_method_ptr do_dct = fdct->do_float_dct;
279  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
280  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
281  JDIMENSION bi;
282 
283  sample_data += start_row; /* fold in the vertical offset once */
284 
285  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
286  /* Load data into workspace, applying unsigned->signed conversion */
287  { register FAST_FLOAT *workspaceptr;
288  register JSAMPROW elemptr;
289  register int elemr;
290 
291  workspaceptr = workspace;
292  for (elemr = 0; elemr < DCTSIZE; elemr++) {
293  elemptr = sample_data[elemr] + start_col;
294 #if DCTSIZE == 8 /* unroll the inner loop */
295  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
296  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
297  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302  *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 #else
304  { register int elemc;
305  for (elemc = DCTSIZE; elemc > 0; elemc--) {
306  *workspaceptr++ = (FAST_FLOAT)
307  (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
308  }
309  }
310 #endif
311  }
312  }
313 
314  /* Perform the DCT */
315  (*do_dct) (workspace);
316 
317  /* Quantize/descale the coefficients, and store into coef_blocks[] */
318  { register FAST_FLOAT temp;
319  register int i;
320  register JCOEFPTR output_ptr = coef_blocks[bi];
321 
322  for (i = 0; i < DCTSIZE2; i++) {
323  /* Apply the quantization and scaling factor */
324  temp = workspace[i] * divisors[i];
325  /* Round to nearest integer.
326  * Since C does not specify the direction of rounding for negative
327  * quotients, we have to force the dividend positive for portability.
328  * The maximum coefficient size is +-16K (for 12-bit data), so this
329  * code should work for either 16-bit or 32-bit ints.
330  */
331  output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
332  }
333  }
334  }
335 }
336 
337 #endif /* DCT_FLOAT_SUPPORTED */
338 
339 
340 /*
341  * Initialize FDCT manager.
342  */
343 
344 GLOBAL(void)
346 {
347  my_fdct_ptr fdct;
348  int i;
349 
350  fdct = (my_fdct_ptr)
351  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
353  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
354  fdct->pub.start_pass = start_pass_fdctmgr;
355 
356  switch (cinfo->dct_method) {
357 #ifdef DCT_ISLOW_SUPPORTED
358  case JDCT_ISLOW:
359  fdct->pub.forward_DCT = forward_DCT;
360  fdct->do_dct = jpeg_fdct_islow;
361  break;
362 #endif
363 #ifdef DCT_IFAST_SUPPORTED
364  case JDCT_IFAST:
365  fdct->pub.forward_DCT = forward_DCT;
366  fdct->do_dct = jpeg_fdct_ifast;
367  break;
368 #endif
369 #ifdef DCT_FLOAT_SUPPORTED
370  case JDCT_FLOAT:
371  fdct->pub.forward_DCT = forward_DCT_float;
373  break;
374 #endif
375  default:
376  ERREXIT(cinfo, JERR_NOT_COMPILED);
377  break;
378  }
379 
380  /* Mark divisor tables unallocated */
381  for (i = 0; i < NUM_QUANT_TBLS; i++) {
382  fdct->divisors[i] = NULL;
383 #ifdef DCT_FLOAT_SUPPORTED
384  fdct->float_divisors[i] = NULL;
385 #endif
386  }
387 }
JDCT_ISLOW
@ JDCT_ISLOW
Definition: jpeglib.h:218
JDCT_FLOAT
@ JDCT_FLOAT
Definition: jpeglib.h:220
GETJSAMPLE
#define GETJSAMPLE(value)
Definition: jmorecfg.h:68
SHIFT_TEMPS
#define SHIFT_TEMPS
Definition: jpegint.h:289
i
png_uint_32 i
Definition: png.h:2732
jpeg_fdct_ifast
jpeg_fdct_ifast(DCTELEM *data)
Definition: jfdctfst.c:114
jpeglib.h
my_fdct_controller::pub
struct jpeg_forward_dct pub
Definition: jcdctmgr.c:23
CONST_BITS
#define CONST_BITS
NUM_QUANT_TBLS
#define NUM_QUANT_TBLS
Definition: jpeglib.h:43
j_common_ptr
struct jpeg_common_struct * j_common_ptr
Definition: jpeglib.h:261
DESCALE
#define DESCALE(x, n)
Definition: jdct.h:146
DIVIDE_BY
#define DIVIDE_BY(a, b)
jinclude.h
MULTIPLY16V16
#define MULTIPLY16V16(var1, var2)
Definition: jdct.h:175
start_pass_fdctmgr
start_pass_fdctmgr(j_compress_ptr cinfo)
Definition: jcdctmgr.c:54
for
#define for
Definition: IcePreprocessor.h:129
ERREXIT1
#define ERREXIT1(cinfo, code, p1)
Definition: jerror.h:208
JPOOL_IMAGE
#define JPOOL_IMAGE
Definition: jpeglib.h:749
GLOBAL
#define GLOBAL(type)
Definition: jmorecfg.h:188
jinit_forward_dct
jinit_forward_dct(j_compress_ptr cinfo)
Definition: jcdctmgr.c:345
ERREXIT
#define ERREXIT(cinfo, code)
Definition: jerror.h:205
DCTSIZE2
#define DCTSIZE2
Definition: jpeglib.h:42
JBLOCKROW
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:71
JCOEFPTR
JCOEF FAR * JCOEFPTR
Definition: jpeglib.h:75
jpeg_compress_struct
Definition: jpeglib.h:268
my_fdct_controller
Definition: jcdctmgr.c:22
compptr
jpeg_component_info * compptr
Definition: jdct.h:102
JDIMENSION
unsigned int JDIMENSION
Definition: jmorecfg.h:171
jpeg_fdct_islow
jpeg_fdct_islow(DCTELEM *data)
Definition: jfdctint.c:140
DCTELEM
INT32 DCTELEM
Definition: jdct.h:32
SIZEOF
#define SIZEOF(object)
Definition: jinclude.h:80
jpeg_component_info::quant_tbl_no
int quant_tbl_no
Definition: jpeglib.h:124
num_blocks
JBLOCKROW JDIMENSION num_blocks
Definition: jpegint.h:377
jdct.h
my_fdct_controller::do_float_dct
float_DCT_method_ptr do_float_dct
Definition: jcdctmgr.c:36
forward_DCT
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
Definition: jcdctmgr.c:180
JDCT_IFAST
@ JDCT_IFAST
Definition: jpeglib.h:219
row
png_bytepp row
Definition: png.h:1756
my_fdct_controller::float_divisors
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]
Definition: jcdctmgr.c:37
forward_DCT_float
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
Definition: jcdctmgr.c:270
my_fdct_controller::divisors
DCTELEM * divisors[NUM_QUANT_TBLS]
Definition: jcdctmgr.c:32
INT16
short INT16
Definition: jmorecfg.h:155
DCTSIZE
#define DCTSIZE
Definition: jpeglib.h:41
METHODDEF
#define METHODDEF(type)
Definition: jmorecfg.h:184
my_fdct_controller::do_dct
forward_DCT_method_ptr do_dct
Definition: jcdctmgr.c:26
JSAMPARRAY
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:67
jpeg_fdct_float
jpeg_fdct_float(FAST_FLOAT *data)
Definition: jfdctflt.c:59
jpeg_forward_dct
Definition: jpegint.h:102
CENTERJSAMPLE
#define CENTERJSAMPLE
Definition: jmorecfg.h:74
JSAMPROW
JSAMPLE FAR * JSAMPROW
Definition: jpeglib.h:66
INT32
long INT32
Definition: jmorecfg.h:161
JQUANT_TBL
Definition: jpeglib.h:83
jpeg_component_info
Definition: jpeglib.h:116
my_fdct_ptr
my_fdct_controller * my_fdct_ptr
Definition: jcdctmgr.c:41
JCOEF
short JCOEF
Definition: jmorecfg.h:99


openhrp3
Author(s): AIST, General Robotix Inc., Nakamura Lab of Dept. of Mechano Informatics at University of Tokyo
autogenerated on Wed Sep 7 2022 02:51:03