hrplib
hrpUtil
Jpeg-6b
jfdctint.c
Go to the documentation of this file.
1
/*
2
* jfdctint.c
3
*
4
* Copyright (C) 1991-1996, Thomas G. Lane.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains a slow-but-accurate integer implementation of the
9
* forward DCT (Discrete Cosine Transform).
10
*
11
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12
* on each column. Direct algorithms are also available, but they are
13
* much more complex and seem not to be any faster when reduced to code.
14
*
15
* This implementation is based on an algorithm described in
16
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19
* The primary algorithm described there uses 11 multiplies and 29 adds.
20
* We use their alternate method with 12 multiplies and 32 adds.
21
* The advantage of this method is that no data path contains more than one
22
* multiplication; this allows a very simple and accurate implementation in
23
* scaled fixed-point arithmetic, with a minimal number of shifts.
24
*/
25
26
#define JPEG_INTERNALS
27
#include "
jinclude.h
"
28
#include "
jpeglib.h
"
29
#include "
jdct.h
"
/* Private declarations for DCT subsystem */
30
31
#ifdef DCT_ISLOW_SUPPORTED
32
33
34
/*
35
* This module is specialized to the case DCTSIZE = 8.
36
*/
37
38
#if DCTSIZE != 8
39
Sorry,
this
code
only copes with 8x8 DCTs.
/* deliberate syntax err */
40
#endif
41
42
43
/*
44
* The poop on this scaling stuff is as follows:
45
*
46
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
47
* larger than the true DCT outputs. The final outputs are therefore
48
* a factor of N larger than desired; since N=8 this can be cured by
49
* a simple right shift at the end of the algorithm. The advantage of
50
* this arrangement is that we save two multiplications per 1-D DCT,
51
* because the y0 and y4 outputs need not be divided by sqrt(N).
52
* In the IJG code, this factor of 8 is removed by the quantization step
53
* (in jcdctmgr.c), NOT in this module.
54
*
55
* We have to do addition and subtraction of the integer inputs, which
56
* is no problem, and multiplication by fractional constants, which is
57
* a problem to do in integer arithmetic. We multiply all the constants
58
* by CONST_SCALE and convert them to integer constants (thus retaining
59
* CONST_BITS bits of precision in the constants). After doing a
60
* multiplication we have to divide the product by CONST_SCALE, with proper
61
* rounding, to produce the correct output. This division can be done
62
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
63
* as long as possible so that partial sums can be added together with
64
* full fractional precision.
65
*
66
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
67
* they are represented to better-than-integral precision. These outputs
68
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69
* with the recommended scaling. (For 12-bit sample data, the intermediate
70
* array is INT32 anyway.)
71
*
72
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
73
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
74
* shows that the values given below are the most effective.
75
*/
76
77
#if BITS_IN_JSAMPLE == 8
78
#define CONST_BITS 13
79
#define PASS1_BITS 2
80
#else
81
#define CONST_BITS 13
82
#define PASS1_BITS 1
/* lose a little precision to avoid overflow */
83
#endif
84
85
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86
* causing a lot of useless floating-point operations at run time.
87
* To get around this we use the following pre-calculated constants.
88
* If you change CONST_BITS you may want to add appropriate values.
89
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
90
*/
91
92
#if CONST_BITS == 13
93
#define FIX_0_298631336 ((INT32) 2446)
/* FIX(0.298631336) */
94
#define FIX_0_390180644 ((INT32) 3196)
/* FIX(0.390180644) */
95
#define FIX_0_541196100 ((INT32) 4433)
/* FIX(0.541196100) */
96
#define FIX_0_765366865 ((INT32) 6270)
/* FIX(0.765366865) */
97
#define FIX_0_899976223 ((INT32) 7373)
/* FIX(0.899976223) */
98
#define FIX_1_175875602 ((INT32) 9633)
/* FIX(1.175875602) */
99
#define FIX_1_501321110 ((INT32) 12299)
/* FIX(1.501321110) */
100
#define FIX_1_847759065 ((INT32) 15137)
/* FIX(1.847759065) */
101
#define FIX_1_961570560 ((INT32) 16069)
/* FIX(1.961570560) */
102
#define FIX_2_053119869 ((INT32) 16819)
/* FIX(2.053119869) */
103
#define FIX_2_562915447 ((INT32) 20995)
/* FIX(2.562915447) */
104
#define FIX_3_072711026 ((INT32) 25172)
/* FIX(3.072711026) */
105
#else
106
#define FIX_0_298631336 FIX(0.298631336)
107
#define FIX_0_390180644 FIX(0.390180644)
108
#define FIX_0_541196100 FIX(0.541196100)
109
#define FIX_0_765366865 FIX(0.765366865)
110
#define FIX_0_899976223 FIX(0.899976223)
111
#define FIX_1_175875602 FIX(1.175875602)
112
#define FIX_1_501321110 FIX(1.501321110)
113
#define FIX_1_847759065 FIX(1.847759065)
114
#define FIX_1_961570560 FIX(1.961570560)
115
#define FIX_2_053119869 FIX(2.053119869)
116
#define FIX_2_562915447 FIX(2.562915447)
117
#define FIX_3_072711026 FIX(3.072711026)
118
#endif
119
120
121
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122
* For 8-bit samples with the recommended scaling, all the variable
123
* and constant values involved are no more than 16 bits wide, so a
124
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125
* For 12-bit samples, a full 32-bit multiplication will be needed.
126
*/
127
128
#if BITS_IN_JSAMPLE == 8
129
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
130
#else
131
#define MULTIPLY(var,const) ((var) * (const))
132
#endif
133
134
135
/*
136
* Perform the forward DCT on one block of samples.
137
*/
138
139
GLOBAL
(
void
)
140
jpeg_fdct_islow
(
DCTELEM
*
data
)
141
{
142
INT32
tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143
INT32
tmp10, tmp11, tmp12, tmp13;
144
INT32
z1, z2, z3, z4, z5;
145
DCTELEM
*
dataptr
;
146
int
ctr;
147
SHIFT_TEMPS
148
149
/* Pass 1: process rows. */
150
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
151
/* furthermore, we scale the results by 2**PASS1_BITS. */
152
153
dataptr
=
data
;
154
for
(ctr =
DCTSIZE
-1; ctr >= 0; ctr--) {
155
tmp0 =
dataptr
[0] +
dataptr
[7];
156
tmp7 =
dataptr
[0] -
dataptr
[7];
157
tmp1 =
dataptr
[1] +
dataptr
[6];
158
tmp6 =
dataptr
[1] -
dataptr
[6];
159
tmp2 =
dataptr
[2] +
dataptr
[5];
160
tmp5 =
dataptr
[2] -
dataptr
[5];
161
tmp3 =
dataptr
[3] +
dataptr
[4];
162
tmp4 =
dataptr
[3] -
dataptr
[4];
163
164
/* Even part per LL&M figure 1 --- note that published figure is faulty;
165
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
166
*/
167
168
tmp10 = tmp0 + tmp3;
169
tmp13 = tmp0 - tmp3;
170
tmp11 = tmp1 + tmp2;
171
tmp12 = tmp1 - tmp2;
172
173
dataptr
[0] = (
DCTELEM
) ((tmp10 + tmp11) <<
PASS1_BITS
);
174
dataptr
[4] = (
DCTELEM
) ((tmp10 - tmp11) <<
PASS1_BITS
);
175
176
z1 =
MULTIPLY
(tmp12 + tmp13,
FIX_0_541196100
);
177
dataptr
[2] = (
DCTELEM
)
DESCALE
(z1 +
MULTIPLY
(tmp13,
FIX_0_765366865
),
178
CONST_BITS
-
PASS1_BITS
);
179
dataptr
[6] = (
DCTELEM
)
DESCALE
(z1 +
MULTIPLY
(tmp12, -
FIX_1_847759065
),
180
CONST_BITS
-
PASS1_BITS
);
181
182
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
183
* cK represents cos(K*pi/16).
184
* i0..i3 in the paper are tmp4..tmp7 here.
185
*/
186
187
z1 = tmp4 + tmp7;
188
z2 = tmp5 + tmp6;
189
z3 = tmp4 + tmp6;
190
z4 = tmp5 + tmp7;
191
z5 =
MULTIPLY
(z3 + z4,
FIX_1_175875602
);
/* sqrt(2) * c3 */
192
193
tmp4 =
MULTIPLY
(tmp4,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
194
tmp5 =
MULTIPLY
(tmp5,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
195
tmp6 =
MULTIPLY
(tmp6,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
196
tmp7 =
MULTIPLY
(tmp7,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
197
z1 =
MULTIPLY
(z1, -
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
198
z2 =
MULTIPLY
(z2, -
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
199
z3 =
MULTIPLY
(z3, -
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
200
z4 =
MULTIPLY
(z4, -
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
201
202
z3 += z5;
203
z4 += z5;
204
205
dataptr
[7] = (
DCTELEM
)
DESCALE
(tmp4 + z1 + z3,
CONST_BITS
-
PASS1_BITS
);
206
dataptr
[5] = (
DCTELEM
)
DESCALE
(tmp5 + z2 + z4,
CONST_BITS
-
PASS1_BITS
);
207
dataptr
[3] = (
DCTELEM
)
DESCALE
(tmp6 + z2 + z3,
CONST_BITS
-
PASS1_BITS
);
208
dataptr
[1] = (
DCTELEM
)
DESCALE
(tmp7 + z1 + z4,
CONST_BITS
-
PASS1_BITS
);
209
210
dataptr
+=
DCTSIZE
;
/* advance pointer to next row */
211
}
212
213
/* Pass 2: process columns.
214
* We remove the PASS1_BITS scaling, but leave the results scaled up
215
* by an overall factor of 8.
216
*/
217
218
dataptr
=
data
;
219
for
(ctr =
DCTSIZE
-1; ctr >= 0; ctr--) {
220
tmp0 =
dataptr
[
DCTSIZE
*0] +
dataptr
[
DCTSIZE
*7];
221
tmp7 =
dataptr
[
DCTSIZE
*0] -
dataptr
[
DCTSIZE
*7];
222
tmp1 =
dataptr
[
DCTSIZE
*1] +
dataptr
[
DCTSIZE
*6];
223
tmp6 =
dataptr
[
DCTSIZE
*1] -
dataptr
[
DCTSIZE
*6];
224
tmp2 =
dataptr
[
DCTSIZE
*2] +
dataptr
[
DCTSIZE
*5];
225
tmp5 =
dataptr
[
DCTSIZE
*2] -
dataptr
[
DCTSIZE
*5];
226
tmp3 =
dataptr
[
DCTSIZE
*3] +
dataptr
[
DCTSIZE
*4];
227
tmp4 =
dataptr
[
DCTSIZE
*3] -
dataptr
[
DCTSIZE
*4];
228
229
/* Even part per LL&M figure 1 --- note that published figure is faulty;
230
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
231
*/
232
233
tmp10 = tmp0 + tmp3;
234
tmp13 = tmp0 - tmp3;
235
tmp11 = tmp1 + tmp2;
236
tmp12 = tmp1 - tmp2;
237
238
dataptr
[
DCTSIZE
*0] = (
DCTELEM
)
DESCALE
(tmp10 + tmp11,
PASS1_BITS
);
239
dataptr
[
DCTSIZE
*4] = (
DCTELEM
)
DESCALE
(tmp10 - tmp11,
PASS1_BITS
);
240
241
z1 =
MULTIPLY
(tmp12 + tmp13,
FIX_0_541196100
);
242
dataptr
[
DCTSIZE
*2] = (
DCTELEM
)
DESCALE
(z1 +
MULTIPLY
(tmp13,
FIX_0_765366865
),
243
CONST_BITS
+
PASS1_BITS
);
244
dataptr
[
DCTSIZE
*6] = (
DCTELEM
)
DESCALE
(z1 +
MULTIPLY
(tmp12, -
FIX_1_847759065
),
245
CONST_BITS
+
PASS1_BITS
);
246
247
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
248
* cK represents cos(K*pi/16).
249
* i0..i3 in the paper are tmp4..tmp7 here.
250
*/
251
252
z1 = tmp4 + tmp7;
253
z2 = tmp5 + tmp6;
254
z3 = tmp4 + tmp6;
255
z4 = tmp5 + tmp7;
256
z5 =
MULTIPLY
(z3 + z4,
FIX_1_175875602
);
/* sqrt(2) * c3 */
257
258
tmp4 =
MULTIPLY
(tmp4,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
259
tmp5 =
MULTIPLY
(tmp5,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
260
tmp6 =
MULTIPLY
(tmp6,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
261
tmp7 =
MULTIPLY
(tmp7,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
262
z1 =
MULTIPLY
(z1, -
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
263
z2 =
MULTIPLY
(z2, -
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
264
z3 =
MULTIPLY
(z3, -
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
265
z4 =
MULTIPLY
(z4, -
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
266
267
z3 += z5;
268
z4 += z5;
269
270
dataptr
[
DCTSIZE
*7] = (
DCTELEM
)
DESCALE
(tmp4 + z1 + z3,
271
CONST_BITS
+
PASS1_BITS
);
272
dataptr
[
DCTSIZE
*5] = (
DCTELEM
)
DESCALE
(tmp5 + z2 + z4,
273
CONST_BITS
+
PASS1_BITS
);
274
dataptr
[
DCTSIZE
*3] = (
DCTELEM
)
DESCALE
(tmp6 + z2 + z3,
275
CONST_BITS
+
PASS1_BITS
);
276
dataptr
[
DCTSIZE
*1] = (
DCTELEM
)
DESCALE
(tmp7 + z1 + z4,
277
CONST_BITS
+
PASS1_BITS
);
278
279
dataptr
++;
/* advance pointer to next column */
280
}
281
}
282
283
#endif
/* DCT_ISLOW_SUPPORTED */
dataptr
int const JOCTET * dataptr
Definition:
jpeglib.h:951
FIX_2_053119869
#define FIX_2_053119869
Definition:
jfdctint.c:102
SHIFT_TEMPS
#define SHIFT_TEMPS
Definition:
jpegint.h:289
jpeglib.h
DESCALE
#define DESCALE(x, n)
Definition:
jdct.h:146
MULTIPLY
#define MULTIPLY(var, const)
Definition:
jfdctint.c:129
FIX_0_390180644
#define FIX_0_390180644
Definition:
jfdctint.c:94
jinclude.h
FIX_0_298631336
#define FIX_0_298631336
Definition:
jfdctint.c:93
FIX_1_961570560
#define FIX_1_961570560
Definition:
jfdctint.c:101
FIX_3_072711026
#define FIX_3_072711026
Definition:
jfdctint.c:104
GLOBAL
#define GLOBAL(type)
Definition:
jmorecfg.h:188
FIX_0_541196100
#define FIX_0_541196100
Definition:
jfdctint.c:95
FIX_1_501321110
#define FIX_1_501321110
Definition:
jfdctint.c:99
PASS1_BITS
#define PASS1_BITS
Definition:
jfdctint.c:79
jpeg_fdct_islow
jpeg_fdct_islow(DCTELEM *data)
Definition:
jfdctint.c:140
DCTELEM
INT32 DCTELEM
Definition:
jdct.h:32
FIX_2_562915447
#define FIX_2_562915447
Definition:
jfdctint.c:103
FIX_1_175875602
#define FIX_1_175875602
Definition:
jfdctint.c:98
jdct.h
data
JSAMPIMAGE data
Definition:
jpeglib.h:945
FIX_0_899976223
#define FIX_0_899976223
Definition:
jfdctint.c:97
DCTSIZE
#define DCTSIZE
Definition:
jpeglib.h:41
FIX_1_847759065
#define FIX_1_847759065
Definition:
jfdctint.c:100
CONST_BITS
#define CONST_BITS
Definition:
jfdctint.c:78
code
Definition:
inftrees.h:24
INT32
long INT32
Definition:
jmorecfg.h:161
FIX_0_765366865
#define FIX_0_765366865
Definition:
jfdctint.c:96
openhrp3
Author(s): AIST, General Robotix Inc., Nakamura Lab of Dept. of Mechano Informatics at University of Tokyo
autogenerated on Wed Sep 7 2022 02:51:03