python/nabo.cpp
Go to the documentation of this file.
1 #include <Python.h>
2 #include <boost/python.hpp>
3 #include <numpy/arrayobject.h>
4 #include "../nabo/nabo.h"
5 #include <iostream>
6 #include <cassert>
7 
8 using namespace boost::python;
9 
14 typedef Eigen::Map<NNSNabo::Matrix> MappedEigenDoubleMatrix;
15 typedef Eigen::Map<NNSNabo::IndexMatrix> MappedEigenIndexMatrix;
16 
17 static const double infD = std::numeric_limits<double>::infinity();
18 static const Index maxI = std::numeric_limits<Index>::max();
19 
20 #if PY_MAJOR_VERSION >= 3
21 int
22 init_numpy()
23 {
24  import_array();
25  return 0;
26 }
27 #else
28 void
30 {
31  import_array();
32 }
33 #endif
34 
35 void matrixSizeFromPythonArray(const PyObject* cloudObj, int& rowCount, int& colCount)
36 {
37  assert(PyArray_CHKFLAGS(cloudObj, NPY_C_CONTIGUOUS) || PyArray_CHKFLAGS(cloudObj, NPY_F_CONTIGUOUS));
38  assert(PyArray_NDIM(cloudObj) == 2);
39  const npy_intp *shape = PyArray_DIMS(cloudObj);
40  if (PyArray_CHKFLAGS(cloudObj, NPY_F_CONTIGUOUS))
41  {
42  colCount = shape[1];
43  rowCount = shape[0];
44  }
45  else
46  {
47  colCount = shape[0];
48  rowCount = shape[1];
49  }
50 }
51 
52 void checkPythonArray(const PyObject* cloudObj, const char *paramName)
53 {
54  std::string startMsg("Argument \"");
55  startMsg += paramName;
56  startMsg += "\" ";
57 
58  if (!PyArray_Check(cloudObj))
59  throw std::runtime_error(startMsg + "must be a multi-dimensional array");
60  const int nDim = PyArray_NDIM(cloudObj);
61  if (nDim != 2)
62  throw std::runtime_error(startMsg + "must be a two-dimensional array");
63  if (PyArray_TYPE(cloudObj) != NPY_FLOAT64)
64  throw std::runtime_error(startMsg + "must hold doubles");
65  if (!PyArray_CHKFLAGS(cloudObj, NPY_C_CONTIGUOUS) && !PyArray_CHKFLAGS(cloudObj, NPY_F_CONTIGUOUS))
66  throw std::runtime_error(startMsg + "must be a continuous array");
67 }
68 
69 MappedEigenDoubleMatrix* eigenFromBoostPython(const object cloudIn, const char *paramName)
70 {
71  int dimCount, pointCount;
72  const PyObject *cloudObj(cloudIn.ptr());
73 
74  checkPythonArray(cloudObj, paramName);
75 
76  matrixSizeFromPythonArray(cloudObj, dimCount, pointCount);
77  double* cloudData(reinterpret_cast<double*>(PyArray_DATA(cloudObj)));
78 
79  return new MappedEigenDoubleMatrix(cloudData, dimCount, pointCount);
80 }
81 
82 void eigenFromBoostPython(NNSNabo::Matrix& cloudOut, const object cloudIn, const char *paramName)
83 {
84  int dimCount, pointCount;
85  const PyObject *cloudObj(cloudIn.ptr());
86 
87  checkPythonArray(cloudObj, paramName);
88 
89  matrixSizeFromPythonArray(cloudObj, dimCount, pointCount);
90  cloudOut.resize(dimCount, pointCount);
91 
92  memcpy(cloudOut.data(), PyArray_DATA(cloudObj), pointCount*dimCount*sizeof(double));
93 }
94 
96 {
97 public:
98  NearestNeighbourSearch(const object pycloud, const SearchType searchType = NNSNabo::KDTREE_LINEAR_HEAP, const Index dim = maxI, const dict params = dict())
99  {
100  // build cloud
101  eigenFromBoostPython(cloud, pycloud, "cloud");
102 
103  // build params
104  Nabo::Parameters _params;
105 
106 #if PY_MAJOR_VERSION >=3
107  object it = params.items();
108 #else
109  object it = params.iteritems();
110 #endif
111 
112  for(int i = 0; i < len(params); ++i)
113  {
114  const tuple item(it.attr("next")());
115  const std::string key = extract<std::string>(item[0]);
116  const object val(item[1]);
117  const std::string valType(val.ptr()->ob_type->tp_name);
118  if (valType == "int")
119  {
120  const int iVal = extract<int>(val);
121  if (iVal >= 0)
122  _params[key] = (unsigned)iVal;
123  else
124  _params[key] = iVal;
125  }
126  }
127 
128  // create search
129  nns = NNSNabo ::create(cloud, dim, searchType, 0, _params);
130  }
131 
133  {
134  delete nns;
135  }
136 
137  tuple knn(const object query, const Index k = 1, const double epsilon = 0, const unsigned optionFlags = 0, const double maxRadius = infD)
138  {
139  // map query and create output matrices
140  MappedEigenDoubleMatrix* mappedQuery(eigenFromBoostPython(query, "query"));
141  NNSNabo::IndexMatrix indexMatrix(k, mappedQuery->cols());
142  NNSNabo::Matrix dists2Matrix(k, mappedQuery->cols());
143 
144  // do the search
145  nns->knn(*mappedQuery, indexMatrix, dists2Matrix, k, epsilon, optionFlags, maxRadius);
146 
147  // build resulting python types
148  npy_intp retDims[2] = { mappedQuery->cols(), k };
149  const int dataCount(k * mappedQuery->cols());
150  PyObject* dists2 = PyArray_EMPTY(2, retDims, PyArray_DOUBLE, PyArray_ISFORTRAN(query.ptr()));
151  memcpy(PyArray_DATA(dists2), dists2Matrix.data(), dataCount*sizeof(double));
152  PyObject* indices = PyArray_EMPTY(2, retDims, PyArray_INT, PyArray_ISFORTRAN(query.ptr()));
153  memcpy(PyArray_DATA(indices), indexMatrix.data(), dataCount*sizeof(int));
154  delete mappedQuery;
155 
156  // return results
157  return make_tuple(object(handle<>(indices)), object(handle<>(dists2)));
158  }
159 
160 protected:
163 };
164 
165 BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(knn_overloads, knn, 1, 5)
166 
168 {
169  init_numpy();
170 
171  enum_<SearchType>("SearchType", "Type of algorithm used for search.")
172  .value("BRUTE_FORCE", NNSNabo::BRUTE_FORCE)
173  .value("KDTREE_LINEAR_HEAP", NNSNabo::KDTREE_LINEAR_HEAP)
174  .value("KDTREE_TREE_HEAP", NNSNabo::KDTREE_TREE_HEAP)
175  ;
176 
177  enum_<SearchOptionFlags>("SearchOptionFlags", "Flags you can OR when creating search.")
178  .value("ALLOW_SELF_MATCH", NNSNabo::ALLOW_SELF_MATCH)
179  .value("SORT_RESULTS", NNSNabo::SORT_RESULTS)
180  ;
181 
182  class_<NearestNeighbourSearch>(
183  "NearestNeighbourSearch",
184  "Nearest-neighbour search object, containing the data, on which you can do the knn(...) query.\n\n"
185  "The data and query must be continuous numpy arrays.\n"
186  "As numpy proposes both C and Fortran data orders, pynabo\n"
187  "will always consider the contiguous dimension to be coordinates\n"
188  "of points, regardless of order, as this provides the fastest\n"
189  "possible execution. The return values of knn(...) will have\n"
190  "the same order as the query and will have the different results\n"
191  "of each point in the contiguous dimension."
192  ,
193  init<const object, optional<const SearchType, const Index, const dict> >(
194  "Create a nearest-neighbour search.\n\n"
195  "Arguments:\n"
196  " data -- data-point cloud in which to search, must be a numpy array\n"
197  " searchType -- type of search, default: KDTREE_LINEAR_HEAP\n"
198  " dim -- number of dimensions to consider, must be lower or equal to cloud.rows(), default: dim of data\n"
199  " creationOptionFlags -- creation options, a bitwise OR of elements of CreationOptionFlags",
200  args("self", "data", "searchType", "dim", "creationOptionFlags, default: 0")
201  )
202  )
203  .def("knn", &NearestNeighbourSearch::knn,
204  knn_overloads(
205  args("self", "query", "k", "epsilon", "optionFlags", "maxRadius"),
206  "Find the k nearest neighbours of query in data.\n\n"
207  "Arguments:\n"
208  " query -- query points, must be a numpy array\n"
209  " k -- number of nearest neighbour requested, default: 1\n"
210  " epsilon -- maximal ratio of error for approximate search, 0 for exact search; has no effect if the number of neighbour found is smaller than the number requested; default: 0.\n"
211  " optionFlags -- search options, a bitwise OR of elements of SearchOptionFlags, default: 0\n"
212  " maxRadius -- maximum radius in which to search, can be used to prune search, is not affected by epsilon, default: inf\n\n"
213  "Returns:\n"
214  " A tuple of two 2D numpy arrays, the first containing indices to points in data, the other containing squared distances."
215  )
216  )
217  ;
218 }
Nabo::NearestNeighbourSearch::KDTREE_LINEAR_HEAP
@ KDTREE_LINEAR_HEAP
kd-tree with linear heap, good for small k (~up to 30)
Definition: nabo.h:293
Nabo::Parameters
Parameter vector.
Definition: nabo.h:231
epsilon
double epsilon
std::tr1::make_tuple
tuple make_tuple()
Definition: gtest.h:1308
Nabo::NearestNeighbourSearch::ALLOW_SELF_MATCH
@ ALLOW_SELF_MATCH
allows the return of the same point as the query, if this point is in the data cloud; forbidden by de...
Definition: nabo.h:310
SearchType
NNSNabo::SearchType SearchType
Definition: python/nabo.cpp:12
Index
NNSNabo::Index Index
Definition: python/nabo.cpp:11
SearchOptionFlags
NNSNabo::SearchOptionFlags SearchOptionFlags
Definition: python/nabo.cpp:13
Nabo::NearestNeighbourSearch::SearchType
SearchType
type of search
Definition: nabo.h:290
Nabo::NearestNeighbourSearch::IndexMatrix
Eigen::Matrix< Index, Eigen::Dynamic, Eigen::Dynamic > IndexMatrix
a matrix of indices to data points
Definition: nabo.h:271
Nabo::NearestNeighbourSearch::Matrix
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
a column-major Eigen matrix in which each column is a point; this matrix has dim rows
Definition: nabo.h:263
MappedEigenDoubleMatrix
Eigen::Map< NNSNabo::Matrix > MappedEigenDoubleMatrix
Definition: python/nabo.cpp:14
testing::internal::string
::std::string string
Definition: gtest.h:1979
Nabo::NearestNeighbourSearch::KDTREE_TREE_HEAP
@ KDTREE_TREE_HEAP
kd-tree with tree heap, good for large k (~from 30)
Definition: nabo.h:294
NearestNeighbourSearch::nns
NNSNabo * nns
Definition: python/nabo.cpp:161
Nabo::NearestNeighbourSearch
Nearest neighbour search interface, templatized on scalar type.
Definition: nabo.h:258
NearestNeighbourSearch::~NearestNeighbourSearch
~NearestNeighbourSearch()
Definition: python/nabo.cpp:132
Nabo::NearestNeighbourSearch::create
static NearestNeighbourSearch * create(const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Create a nearest-neighbour search.
Definition: nabo/nabo.cpp:135
Nabo::NearestNeighbourSearch::SearchOptionFlags
SearchOptionFlags
search option
Definition: nabo.h:308
NearestNeighbourSearch::knn
tuple knn(const object query, const Index k=1, const double epsilon=0, const unsigned optionFlags=0, const double maxRadius=infD)
Definition: python/nabo.cpp:137
test.nns
nns
Definition: test.py:7
NearestNeighbourSearch::cloud
NNSNabo::Matrix cloud
Definition: python/nabo.cpp:162
matrixSizeFromPythonArray
void matrixSizeFromPythonArray(const PyObject *cloudObj, int &rowCount, int &colCount)
Definition: python/nabo.cpp:35
BOOST_PYTHON_MODULE
BOOST_PYTHON_MODULE(pynabo)
Definition: python/nabo.cpp:167
Nabo::NearestNeighbourSearch::BRUTE_FORCE
@ BRUTE_FORCE
brute force, check distance to every point in the data
Definition: nabo.h:292
NNSNabo
Nabo::NNSearchD NNSNabo
Definition: python/nabo.cpp:10
eigenFromBoostPython
MappedEigenDoubleMatrix * eigenFromBoostPython(const object cloudIn, const char *paramName)
Definition: python/nabo.cpp:69
NearestNeighbourSearch
Definition: python/nabo.cpp:95
Nabo::NearestNeighbourSearch::Index
int Index
an index to a Vector or a Matrix, for refering to data points
Definition: nabo.h:267
NearestNeighbourSearch::NearestNeighbourSearch
NearestNeighbourSearch(const object pycloud, const SearchType searchType=NNSNabo::KDTREE_LINEAR_HEAP, const Index dim=maxI, const dict params=dict())
Definition: python/nabo.cpp:98
MappedEigenIndexMatrix
Eigen::Map< NNSNabo::IndexMatrix > MappedEigenIndexMatrix
Definition: python/nabo.cpp:15
init
void init(const M_string &remappings)
infD
static const double infD
Definition: python/nabo.cpp:17
maxI
static const Index maxI
Definition: python/nabo.cpp:18
init_numpy
void init_numpy()
Definition: python/nabo.cpp:29
Nabo::NearestNeighbourSearch::SORT_RESULTS
@ SORT_RESULTS
sort points by distances, when k > 1; do not sort by default
Definition: nabo.h:311
checkPythonArray
void checkPythonArray(const PyObject *cloudObj, const char *paramName)
Definition: python/nabo.cpp:52


mp2p_icp
Author(s):
autogenerated on Fri Dec 20 2024 03:45:59