Define the :class:`~geographiclib.geodesic.Geodesic` class
The ellipsoid parameters are defined by the constructor. The direct and
inverse geodesic problems are solved by
* :meth:`~geographiclib.geodesic.Geodesic.Inverse` Solve the inverse
geodesic problem
* :meth:`~geographiclib.geodesic.Geodesic.Direct` Solve the direct
geodesic problem
* :meth:`~geographiclib.geodesic.Geodesic.ArcDirect` Solve the direct
geodesic problem in terms of spherical arc length
:class:`~geographiclib.geodesicline.GeodesicLine` objects can be created
with
* :meth:`~geographiclib.geodesic.Geodesic.Line`
* :meth:`~geographiclib.geodesic.Geodesic.DirectLine`
* :meth:`~geographiclib.geodesic.Geodesic.ArcDirectLine`
* :meth:`~geographiclib.geodesic.Geodesic.InverseLine`
:class:`~geographiclib.polygonarea.PolygonArea` objects can be created
with
* :meth:`~geographiclib.geodesic.Geodesic.Polygon`
The public attributes for this class are
* :attr:`~geographiclib.geodesic.Geodesic.a`
:attr:`~geographiclib.geodesic.Geodesic.f`
*outmask* and *caps* bit masks are
* :const:`~geographiclib.geodesic.Geodesic.EMPTY`
* :const:`~geographiclib.geodesic.Geodesic.LATITUDE`
* :const:`~geographiclib.geodesic.Geodesic.LONGITUDE`
* :const:`~geographiclib.geodesic.Geodesic.AZIMUTH`
* :const:`~geographiclib.geodesic.Geodesic.DISTANCE`
* :const:`~geographiclib.geodesic.Geodesic.STANDARD`
* :const:`~geographiclib.geodesic.Geodesic.DISTANCE_IN`
* :const:`~geographiclib.geodesic.Geodesic.REDUCEDLENGTH`
* :const:`~geographiclib.geodesic.Geodesic.GEODESICSCALE`
* :const:`~geographiclib.geodesic.Geodesic.AREA`
* :const:`~geographiclib.geodesic.Geodesic.ALL`
* :const:`~geographiclib.geodesic.Geodesic.LONG_UNROLL`
:Example:
>>> from geographiclib.geodesic import Geodesic
>>> # The geodesic inverse problem
... Geodesic.WGS84.Inverse(-41.32, 174.81, 40.96, -5.50)
{'lat1': -41.32,
'a12': 179.6197069334283,
's12': 19959679.26735382,
'lat2': 40.96,
'azi2': 18.825195123248392,
'azi1': 161.06766998615882,
'lon1': 174.81,
'lon2': -5.5}