cxx11_tensor_morphing_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 #define EIGEN_TEST_NO_LONGDOUBLE
17 #define EIGEN_TEST_NO_COMPLEX
18 
19 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
20 #define EIGEN_USE_SYCL
21 
22 
23 #include "main.h"
24 #include <unsupported/Eigen/CXX11/Tensor>
25 
26 using Eigen::array;
27 using Eigen::SyclDevice;
28 using Eigen::Tensor;
29 using Eigen::TensorMap;
30 
31 template <typename DataType, int DataLayout, typename IndexType>
32 static void test_simple_reshape(const Eigen::SyclDevice& sycl_device)
33 {
38 
43 
44  tensor1.setRandom();
45 
46  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType)));
47  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
48  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor3.size()*sizeof(DataType)));
49  DataType* gpu_data4 = static_cast<DataType*>(sycl_device.allocate(tensor4.size()*sizeof(DataType)));
50 
55 
56  sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType));
57 
58  gpu2.device(sycl_device)=gpu1.reshape(dim2);
59  sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor1.size())*sizeof(DataType));
60 
61  gpu3.device(sycl_device)=gpu1.reshape(dim3);
62  sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3,(tensor3.size())*sizeof(DataType));
63 
64  gpu4.device(sycl_device)=gpu1.reshape(dim2).reshape(dim4);
65  sycl_device.memcpyDeviceToHost(tensor4.data(), gpu_data4,(tensor4.size())*sizeof(DataType));
66  for (IndexType i = 0; i < 2; ++i){
67  for (IndexType j = 0; j < 3; ++j){
68  for (IndexType k = 0; k < 7; ++k){
69  VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));
70  if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
71  VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k));
72  VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k));
73  }
74  else{
75  //VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k)); /// RowMajor
76  VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j*7 +k));
77  VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i*3 +j,k));
78  }
79  }
80  }
81  }
82  sycl_device.deallocate(gpu_data1);
83  sycl_device.deallocate(gpu_data2);
84  sycl_device.deallocate(gpu_data3);
85  sycl_device.deallocate(gpu_data4);
86 }
87 
88 
89 template<typename DataType, int DataLayout, typename IndexType>
90 static void test_reshape_as_lvalue(const Eigen::SyclDevice& sycl_device)
91 {
98 
99  tensor.setRandom();
100 
101  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
102  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2d.size()*sizeof(DataType)));
103  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor5d.size()*sizeof(DataType)));
104 
108 
109  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
110 
111  gpu2.reshape(dim1).device(sycl_device)=gpu1;
112  sycl_device.memcpyDeviceToHost(tensor2d.data(), gpu_data2,(tensor2d.size())*sizeof(DataType));
113 
114  gpu3.reshape(dim1).device(sycl_device)=gpu1;
115  sycl_device.memcpyDeviceToHost(tensor5d.data(), gpu_data3,(tensor5d.size())*sizeof(DataType));
116 
117 
118  for (IndexType i = 0; i < 2; ++i){
119  for (IndexType j = 0; j < 3; ++j){
120  for (IndexType k = 0; k < 7; ++k){
121  VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
122  if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
123  VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k));
124  }
125  else{
126  VERIFY_IS_EQUAL(tensor2d(i*3 +j,k),tensor(i,j,k));
127  }
128  }
129  }
130  }
131  sycl_device.deallocate(gpu_data1);
132  sycl_device.deallocate(gpu_data2);
133  sycl_device.deallocate(gpu_data3);
134 }
135 
136 
137 template <typename DataType, int DataLayout, typename IndexType>
138 static void test_simple_slice(const Eigen::SyclDevice &sycl_device)
139 {
140  IndexType sizeDim1 = 2;
141  IndexType sizeDim2 = 3;
142  IndexType sizeDim3 = 5;
143  IndexType sizeDim4 = 7;
144  IndexType sizeDim5 = 11;
145  array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
146  Tensor<DataType, 5,DataLayout, IndexType> tensor(tensorRange);
147  tensor.setRandom();
148  array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
149  Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);
150 
151  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
152  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
153  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
154  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
157  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
158  gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
159  sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));
160  VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
161 
162 
163  array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
164  Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
165  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
166  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
167  Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
168  Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
169  gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
170  sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));
171  for (IndexType i = 0; i < 2; ++i) {
172  for (IndexType j = 0; j < 2; ++j) {
173  for (IndexType k = 0; k < 3; ++k) {
174  VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
175  }
176  }
177  }
178  sycl_device.deallocate(gpu_data1);
179  sycl_device.deallocate(gpu_data2);
180  sycl_device.deallocate(gpu_data3);
181 }
182 
183 
184 template <typename DataType, int DataLayout, typename IndexType>
185 static void test_strided_slice_as_rhs_sycl(const Eigen::SyclDevice &sycl_device)
186 {
187  IndexType sizeDim1 = 2;
188  IndexType sizeDim2 = 3;
189  IndexType sizeDim3 = 5;
190  IndexType sizeDim4 = 7;
191  IndexType sizeDim5 = 11;
192  typedef Eigen::DSizes<IndexType, 5> Index5;
193  Index5 strides(1L,1L,1L,1L,1L);
194  Index5 indicesStart(1L,2L,3L,4L,5L);
195  Index5 indicesStop(2L,3L,4L,5L,6L);
196  Index5 lengths(1L,1L,1L,1L,1L);
197 
198  array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
199  Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange);
200  tensor.setRandom();
201 
202  array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
203  Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);
204  Tensor<DataType, 5, DataLayout, IndexType> slice_stride1(slice1_range);
205 
206  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
207  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
208  DataType* gpu_data_stride2 = static_cast<DataType*>(sycl_device.allocate(slice_stride1.size()*sizeof(DataType)));
209 
210  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
211  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
212  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride2(gpu_data_stride2, slice1_range);
213 
216  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
217  gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
218  sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));
219 
220  gpu_stride2.device(sycl_device)=gpu1.stridedSlice(indicesStart,indicesStop,strides);
221  sycl_device.memcpyDeviceToHost(slice_stride1.data(), gpu_data_stride2,(slice_stride1.size())*sizeof(DataType));
222 
223  VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
224  VERIFY_IS_EQUAL(slice_stride1(0,0,0,0,0), tensor(1,2,3,4,5));
225 
226  array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
227  Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
228  Tensor<DataType, 5, DataLayout, IndexType> strideSlice2(slice2_range);
229 
230  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
231  DataType* gpu_data_stride3 = static_cast<DataType*>(sycl_device.allocate(strideSlice2.size()*sizeof(DataType)));
232  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
233  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride3(gpu_data_stride3, slice2_range);
234  Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
235  Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
236  Index5 strides2(1L,1L,1L,1L,1L);
237  Index5 indicesStart2(1L,1L,3L,4L,5L);
238  Index5 indicesStop2(2L,2L,5L,6L,8L);
239 
240  gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
241  sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));
242 
243  gpu_stride3.device(sycl_device)=gpu1.stridedSlice(indicesStart2,indicesStop2,strides2);
244  sycl_device.memcpyDeviceToHost(strideSlice2.data(), gpu_data_stride3,(strideSlice2.size())*sizeof(DataType));
245 
246  for (IndexType i = 0; i < 2; ++i) {
247  for (IndexType j = 0; j < 2; ++j) {
248  for (IndexType k = 0; k < 3; ++k) {
249  VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
250  VERIFY_IS_EQUAL(strideSlice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
251  }
252  }
253  }
254  sycl_device.deallocate(gpu_data1);
255  sycl_device.deallocate(gpu_data2);
256  sycl_device.deallocate(gpu_data3);
257 }
258 
259 template<typename DataType, int DataLayout, typename IndexType>
260 static void test_strided_slice_write_sycl(const Eigen::SyclDevice& sycl_device)
261 {
263  typedef Eigen::DSizes<IndexType, 2> Index2;
264  IndexType sizeDim1 = 7L;
265  IndexType sizeDim2 = 11L;
266  array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}};
267  Tensor<DataType, 2, DataLayout, IndexType> tensor(tensorRange),tensor2(tensorRange);
268  IndexType sliceDim1 = 2;
269  IndexType sliceDim2 = 3;
270  array<IndexType, 2> sliceRange = {{sliceDim1, sliceDim2}};
271  Tensor2f slice(sliceRange);
272  Index2 strides(1L,1L);
273  Index2 indicesStart(3L,4L);
274  Index2 indicesStop(5L,7L);
275  Index2 lengths(2L,3L);
276 
277  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
278  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
279  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice.size()*sizeof(DataType)));
280  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
281  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, tensorRange);
282  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu3(gpu_data3, sliceRange);
283 
284 
285  tensor.setRandom();
286  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
287  gpu2.device(sycl_device)=gpu1;
288 
289  slice.setRandom();
290  sycl_device.memcpyHostToDevice(gpu_data3, slice.data(),(slice.size())*sizeof(DataType));
291 
292 
293  gpu1.slice(indicesStart,lengths).device(sycl_device)=gpu3;
294  gpu2.stridedSlice(indicesStart,indicesStop,strides).device(sycl_device)=gpu3;
295  sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data1,(tensor.size())*sizeof(DataType));
296  sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType));
297 
298  for(IndexType i=0;i<sizeDim1;i++)
299  for(IndexType j=0;j<sizeDim2;j++){
300  VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
301  }
302  sycl_device.deallocate(gpu_data1);
303  sycl_device.deallocate(gpu_data2);
304  sycl_device.deallocate(gpu_data3);
305 }
306 
307 template <typename OutIndex, typename DSizes>
310  for (int i = 0; i < DSizes::count; ++i) {
311  out[i] = in[i];
312  }
313  return out;
314 }
315 
316 template <class DataType, int DataLayout, typename IndexType, typename ConvertedIndexType>
317 int run_eigen(const SyclDevice& sycl_device) {
320  using TensorMI64 = TensorMap<TensorI64>;
321  using TensorMI32 = TensorMap<TensorI32>;
322  Eigen::array<IndexType, 5> tensor_range{{4, 1, 1, 1, 6}};
323  Eigen::array<IndexType, 5> slice_range{{4, 1, 1, 1, 3}};
324 
325  TensorI64 out_tensor_gpu(tensor_range);
326  TensorI64 out_tensor_cpu(tensor_range);
327  out_tensor_cpu.setRandom();
328 
329  TensorI64 sub_tensor(slice_range);
330  sub_tensor.setRandom();
331 
332  DataType* out_gpu_data = static_cast<DataType*>(sycl_device.allocate(out_tensor_cpu.size() * sizeof(DataType)));
333  DataType* sub_gpu_data = static_cast<DataType*>(sycl_device.allocate(sub_tensor.size() * sizeof(DataType)));
334  TensorMI64 out_gpu(out_gpu_data, tensor_range);
335  TensorMI64 sub_gpu(sub_gpu_data, slice_range);
336 
337  sycl_device.memcpyHostToDevice(out_gpu_data, out_tensor_cpu.data(), out_tensor_cpu.size() * sizeof(DataType));
338  sycl_device.memcpyHostToDevice(sub_gpu_data, sub_tensor.data(), sub_tensor.size() * sizeof(DataType));
339 
340  Eigen::array<ConvertedIndexType, 5> slice_offset_32{{0, 0, 0, 0, 3}};
341  Eigen::array<ConvertedIndexType, 5> slice_range_32{{4, 1, 1, 1, 3}};
342  TensorMI32 out_cpu_32(out_tensor_cpu.data(), To32BitDims<ConvertedIndexType>(out_tensor_cpu.dimensions()));
343  TensorMI32 sub_cpu_32(sub_tensor.data(), To32BitDims<ConvertedIndexType>(sub_tensor.dimensions()));
344  TensorMI32 out_gpu_32(out_gpu.data(), To32BitDims<ConvertedIndexType>(out_gpu.dimensions()));
345  TensorMI32 sub_gpu_32(sub_gpu.data(), To32BitDims<ConvertedIndexType>(sub_gpu.dimensions()));
346 
347  out_gpu_32.slice(slice_offset_32, slice_range_32).device(sycl_device) = sub_gpu_32;
348 
349  out_cpu_32.slice(slice_offset_32, slice_range_32) = sub_cpu_32;
350 
351  sycl_device.memcpyDeviceToHost(out_tensor_gpu.data(), out_gpu_data, out_tensor_cpu.size() * sizeof(DataType));
352  int has_err = 0;
353  for (IndexType i = 0; i < out_tensor_cpu.size(); ++i) {
354  auto exp = out_tensor_cpu(i);
355  auto val = out_tensor_gpu(i);
356  if (val != exp) {
357  std::cout << "#" << i << " got " << val << " but expected " << exp << std::endl;
358  has_err = 1;
359  }
360  }
361  sycl_device.deallocate(out_gpu_data);
362  sycl_device.deallocate(sub_gpu_data);
363  return has_err;
364 }
365 
366 template<typename DataType, typename dev_Selector> void sycl_morphing_test_per_device(dev_Selector s){
367  QueueInterface queueInterface(s);
368  auto sycl_device = Eigen::SyclDevice(&queueInterface);
369  test_simple_slice<DataType, RowMajor, int64_t>(sycl_device);
370  test_simple_slice<DataType, ColMajor, int64_t>(sycl_device);
371  test_simple_reshape<DataType, RowMajor, int64_t>(sycl_device);
372  test_simple_reshape<DataType, ColMajor, int64_t>(sycl_device);
373  test_reshape_as_lvalue<DataType, RowMajor, int64_t>(sycl_device);
374  test_reshape_as_lvalue<DataType, ColMajor, int64_t>(sycl_device);
375  test_strided_slice_write_sycl<DataType, ColMajor, int64_t>(sycl_device);
376  test_strided_slice_write_sycl<DataType, RowMajor, int64_t>(sycl_device);
377  test_strided_slice_as_rhs_sycl<DataType, ColMajor, int64_t>(sycl_device);
378  test_strided_slice_as_rhs_sycl<DataType, RowMajor, int64_t>(sycl_device);
379  run_eigen<float, RowMajor, long, int>(sycl_device);
380 }
381 EIGEN_DECLARE_TEST(cxx11_tensor_morphing_sycl)
382 {
383  for (const auto& device :Eigen::get_sycl_supported_devices()) {
384  CALL_SUBTEST(sycl_morphing_test_per_device<float>(device));
385  }
386 }
Eigen::Tensor
The tensor class.
Definition: Tensor.h:63
test_reshape_as_lvalue
static void test_reshape_as_lvalue(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:90
test_simple_reshape
static void test_simple_reshape(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:32
array
int array[24]
Definition: Map_general_stride.cpp:1
Eigen::internal::strides
EIGEN_ALWAYS_INLINE DSizes< IndexType, NumDims > strides(const DSizes< IndexType, NumDims > &dimensions)
Definition: TensorBlock.h:26
test_strided_slice_write_sycl
static void test_strided_slice_write_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:260
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::array
Definition: EmulateArray.h:21
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
DataLayout
static const int DataLayout
Definition: cxx11_tensor_image_patch_sycl.cpp:24
test_simple_slice
static void test_simple_slice(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:138
sizes
std::vector< Array2i > sizes
Definition: dense_solvers.cpp:12
exp
const EIGEN_DEVICE_FUNC ExpReturnType exp() const
Definition: ArrayCwiseUnaryOps.h:97
Eigen::DSizes
Definition: TensorDimensions.h:263
test_eigen_tensor.indices
indices
Definition: test_eigen_tensor.py:33
slice
Definition: pytypes.h:1909
sycl_morphing_test_per_device
void sycl_morphing_test_per_device(dev_Selector s)
Definition: cxx11_tensor_morphing_sycl.cpp:366
test_strided_slice_as_rhs_sycl
static void test_strided_slice_as_rhs_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:185
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(cxx11_tensor_morphing_sycl)
Definition: cxx11_tensor_morphing_sycl.cpp:381
Eigen::TensorMap
A tensor expression mapping an existing array of data.
Definition: TensorForwardDeclarations.h:52
L
MatrixXd L
Definition: LLT_example.cpp:6
To32BitDims
Eigen::array< OutIndex, DSizes::count > To32BitDims(const DSizes &in)
Definition: cxx11_tensor_morphing_sycl.cpp:308
out
std::ofstream out("Result.txt")
Eigen::TensorBase< Tensor< Scalar_, NumIndices_, Options_, IndexType_ > >::setRandom
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor< Scalar_, NumIndices_, Options_, IndexType_ > & setRandom()
Definition: TensorBase.h:996
main.h
Eigen::Tensor::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
Eigen::Tensor::size
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
run_eigen
int run_eigen(const SyclDevice &sycl_device)
Definition: cxx11_tensor_morphing_sycl.cpp:317
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:319
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:09