Public Member Functions | Private Types | Private Attributes | List of all members
Spectra::DenseSymMatProd< Scalar, Uplo > Class Template Reference

#include <DenseSymMatProd.h>

Public Member Functions

Index cols () const
 
 DenseSymMatProd (ConstGenericMatrix &mat)
 
void perform_op (const Scalar *x_in, Scalar *y_out) const
 
Index rows () const
 

Private Types

typedef Eigen::Index Index
 
typedef Eigen::Map< const VectorMapConstVec
 
typedef Eigen::Map< VectorMapVec
 
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::DynamicMatrix
 
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
 

Private Attributes

const typedef Eigen::Ref< const MatrixConstGenericMatrix
 
ConstGenericMatrix m_mat
 

Detailed Description

template<typename Scalar, int Uplo = Eigen::Lower>
class Spectra::DenseSymMatProd< Scalar, Uplo >

This class defines the matrix-vector multiplication operation on a symmetric real matrix $A$, i.e., calculating $y=Ax$ for any vector $x$. It is mainly used in the SymEigsSolver eigen solver.

Definition at line 22 of file DenseSymMatProd.h.

Member Typedef Documentation

◆ Index

template<typename Scalar , int Uplo = Eigen::Lower>
typedef Eigen::Index Spectra::DenseSymMatProd< Scalar, Uplo >::Index
private

Definition at line 25 of file DenseSymMatProd.h.

◆ MapConstVec

template<typename Scalar , int Uplo = Eigen::Lower>
typedef Eigen::Map<const Vector> Spectra::DenseSymMatProd< Scalar, Uplo >::MapConstVec
private

Definition at line 28 of file DenseSymMatProd.h.

◆ MapVec

template<typename Scalar , int Uplo = Eigen::Lower>
typedef Eigen::Map<Vector> Spectra::DenseSymMatProd< Scalar, Uplo >::MapVec
private

Definition at line 29 of file DenseSymMatProd.h.

◆ Matrix

template<typename Scalar , int Uplo = Eigen::Lower>
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Spectra::DenseSymMatProd< Scalar, Uplo >::Matrix
private

Definition at line 26 of file DenseSymMatProd.h.

◆ Vector

template<typename Scalar , int Uplo = Eigen::Lower>
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Spectra::DenseSymMatProd< Scalar, Uplo >::Vector
private

Definition at line 27 of file DenseSymMatProd.h.

Constructor & Destructor Documentation

◆ DenseSymMatProd()

template<typename Scalar , int Uplo = Eigen::Lower>
Spectra::DenseSymMatProd< Scalar, Uplo >::DenseSymMatProd ( ConstGenericMatrix mat)
inline

Constructor to create the matrix operation object.

Parameters
matAn Eigen matrix object, whose type can be Eigen::Matrix<Scalar, ...> (e.g. Eigen::MatrixXd and Eigen::MatrixXf), or its mapped version (e.g. Eigen::Map<Eigen::MatrixXd>).

Definition at line 43 of file DenseSymMatProd.h.

Member Function Documentation

◆ cols()

template<typename Scalar , int Uplo = Eigen::Lower>
Index Spectra::DenseSymMatProd< Scalar, Uplo >::cols ( ) const
inline

Return the number of columns of the underlying matrix.

Definition at line 54 of file DenseSymMatProd.h.

◆ perform_op()

template<typename Scalar , int Uplo = Eigen::Lower>
void Spectra::DenseSymMatProd< Scalar, Uplo >::perform_op ( const Scalar x_in,
Scalar y_out 
) const
inline

Perform the matrix-vector multiplication operation $y=Ax$.

Parameters
x_inPointer to the $x$ vector.
y_outPointer to the $y$ vector.

Definition at line 63 of file DenseSymMatProd.h.

◆ rows()

template<typename Scalar , int Uplo = Eigen::Lower>
Index Spectra::DenseSymMatProd< Scalar, Uplo >::rows ( ) const
inline

Return the number of rows of the underlying matrix.

Definition at line 50 of file DenseSymMatProd.h.

Member Data Documentation

◆ ConstGenericMatrix

template<typename Scalar , int Uplo = Eigen::Lower>
const typedef Eigen::Ref<const Matrix> Spectra::DenseSymMatProd< Scalar, Uplo >::ConstGenericMatrix
private

Definition at line 30 of file DenseSymMatProd.h.

◆ m_mat

template<typename Scalar , int Uplo = Eigen::Lower>
ConstGenericMatrix Spectra::DenseSymMatProd< Scalar, Uplo >::m_mat
private

Definition at line 32 of file DenseSymMatProd.h.


The documentation for this class was generated from the following file:


gtsam
Author(s):
autogenerated on Sun Dec 22 2024 04:25:06