SelfadjointMatrixVector.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
11 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 /* Optimized selfadjoint matrix * vector product:
18  * This algorithm processes 2 columns at once that allows to both reduce
19  * the number of load/stores of the result by a factor 2 and to reduce
20  * the instruction dependency.
21  */
22 
23 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
25 
26 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
28 
29 {
31 void run(
32  Index size,
33  const Scalar* lhs, Index lhsStride,
34  const Scalar* rhs,
35  Scalar* res,
36  Scalar alpha);
37 };
38 
39 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
42  Index size,
43  const Scalar* lhs, Index lhsStride,
44  const Scalar* rhs,
45  Scalar* res,
46  Scalar alpha)
47 {
48  typedef typename packet_traits<Scalar>::type Packet;
49  typedef typename NumTraits<Scalar>::Real RealScalar;
50  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
51 
52  enum {
53  IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
54  IsLower = UpLo == Lower ? 1 : 0,
55  FirstTriangular = IsRowMajor == IsLower
56  };
57 
58  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
59  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
61 
62  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
63  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
64 
65  Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
66 
67  Index bound = numext::maxi(Index(0), size-8) & 0xfffffffe;
68  if (FirstTriangular)
69  bound = size - bound;
70 
71  for (Index j=FirstTriangular ? bound : 0;
72  j<(FirstTriangular ? size : bound);j+=2)
73  {
74  const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
75  const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
76 
77  Scalar t0 = cjAlpha * rhs[j];
78  Packet ptmp0 = pset1<Packet>(t0);
79  Scalar t1 = cjAlpha * rhs[j+1];
80  Packet ptmp1 = pset1<Packet>(t1);
81 
82  Scalar t2(0);
83  Packet ptmp2 = pset1<Packet>(t2);
84  Scalar t3(0);
85  Packet ptmp3 = pset1<Packet>(t3);
86 
87  Index starti = FirstTriangular ? 0 : j+2;
88  Index endi = FirstTriangular ? j : size;
89  Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti);
90  Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
91 
92  res[j] += cjd.pmul(numext::real(A0[j]), t0);
93  res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
94  if(FirstTriangular)
95  {
96  res[j] += cj0.pmul(A1[j], t1);
97  t3 += cj1.pmul(A1[j], rhs[j]);
98  }
99  else
100  {
101  res[j+1] += cj0.pmul(A0[j+1],t0);
102  t2 += cj1.pmul(A0[j+1], rhs[j+1]);
103  }
104 
105  for (Index i=starti; i<alignedStart; ++i)
106  {
107  res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
108  t2 += cj1.pmul(A0[i], rhs[i]);
109  t3 += cj1.pmul(A1[i], rhs[i]);
110  }
111  // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
112  // gcc 4.2 does this optimization automatically.
113  const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
114  const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
115  const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
116  Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
117  for (Index i=alignedStart; i<alignedEnd; i+=PacketSize)
118  {
119  Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
120  Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
121  Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
122  Packet Xi = pload <Packet>(resIt);
123 
124  Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
125  ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
126  ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
127  pstore(resIt,Xi); resIt += PacketSize;
128  }
129  for (Index i=alignedEnd; i<endi; i++)
130  {
131  res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
132  t2 += cj1.pmul(A0[i], rhs[i]);
133  t3 += cj1.pmul(A1[i], rhs[i]);
134  }
135 
136  res[j] += alpha * (t2 + predux(ptmp2));
137  res[j+1] += alpha * (t3 + predux(ptmp3));
138  }
139  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
140  {
141  const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
142 
143  Scalar t1 = cjAlpha * rhs[j];
144  Scalar t2(0);
145  res[j] += cjd.pmul(numext::real(A0[j]), t1);
146  for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
147  {
148  res[i] += cj0.pmul(A0[i], t1);
149  t2 += cj1.pmul(A0[i], rhs[i]);
150  }
151  res[j] += alpha * t2;
152  }
153 }
154 
155 } // end namespace internal
156 
157 /***************************************************************************
158 * Wrapper to product_selfadjoint_vector
159 ***************************************************************************/
160 
161 namespace internal {
162 
163 template<typename Lhs, int LhsMode, typename Rhs>
164 struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,0,true>
165 {
167 
171 
175 
176  enum { LhsUpLo = LhsMode&(Upper|Lower) };
177 
178  template<typename Dest>
179  static EIGEN_DEVICE_FUNC
180  void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
181  {
182  typedef typename Dest::Scalar ResScalar;
183  typedef typename Rhs::Scalar RhsScalar;
185 
186  eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
187 
188  typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
189  typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
190 
191  Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
192  * RhsBlasTraits::extractScalarFactor(a_rhs);
193 
194  enum {
195  EvalToDest = (Dest::InnerStrideAtCompileTime==1),
196  UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
197  };
198 
201 
202  ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
203  EvalToDest ? dest.data() : static_dest.data());
204 
205  ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
206  UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
207 
208  if(!EvalToDest)
209  {
210  #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
211  Index size = dest.size();
212  EIGEN_DENSE_STORAGE_CTOR_PLUGIN
213  #endif
214  MappedDest(actualDestPtr, dest.size()) = dest;
215  }
216 
217  if(!UseRhs)
218  {
219  #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
220  Index size = rhs.size();
221  EIGEN_DENSE_STORAGE_CTOR_PLUGIN
222  #endif
223  Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
224  }
225 
226 
227  internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor,
228  int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
229  (
230  lhs.rows(), // size
231  &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
232  actualRhsPtr, // rhs info
233  actualDestPtr, // result info
234  actualAlpha // scale factor
235  );
236 
237  if(!EvalToDest)
238  dest = MappedDest(actualDestPtr, dest.size());
239  }
240 };
241 
242 template<typename Lhs, typename Rhs, int RhsMode>
243 struct selfadjoint_product_impl<Lhs,0,true,Rhs,RhsMode,false>
244 {
246  enum { RhsUpLo = RhsMode&(Upper|Lower) };
247 
248  template<typename Dest>
249  static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
250  {
251  // let's simply transpose the product
252  Transpose<Dest> destT(dest);
254  Transpose<const Lhs>, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha);
255  }
256 };
257 
258 } // end namespace internal
259 
260 } // end namespace Eigen
261 
262 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
gtsam.examples.DogLegOptimizerExample.int
int
Definition: DogLegOptimizerExample.py:111
Eigen::internal::Lhs
@ Lhs
Definition: TensorContractionMapper.h:19
EIGEN_DEVICE_FUNC
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
EIGEN_RESTRICT
#define EIGEN_RESTRICT
Definition: Macros.h:1160
pybind11.setup_helpers.bound
bound
Definition: setup_helpers.py:349
alpha
RealScalar alpha
Definition: level1_cplx_impl.h:147
Packet
internal::packet_traits< Scalar >::type Packet
Definition: benchmark-blocking-sizes.cpp:54
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Eigen::internal::selfadjoint_product_impl
Definition: ProductEvaluators.h:793
Eigen::RowMajorBit
const unsigned int RowMajorBit
Definition: Constants.h:66
Eigen::internal::gemv_static_vector_if
Definition: GeneralProduct.h:161
Eigen::internal::packet_traits
Definition: GenericPacketMath.h:106
Eigen::Upper
@ Upper
Definition: Constants.h:211
real
float real
Definition: datatypes.h:10
Eigen::RowMajor
@ RowMajor
Definition: Constants.h:321
Eigen::internal::conj_helper::pmul
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmul(const LhsType &x, const RhsType &y) const
Definition: ConjHelper.h:71
res
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
ei_declare_aligned_stack_constructed_variable
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
Definition: Memory.h:768
Eigen::internal::selfadjoint_product_impl< Lhs, LhsMode, false, Rhs, 0, true >::Scalar
Product< Lhs, Rhs >::Scalar Scalar
Definition: SelfadjointMatrixVector.h:170
A0
static const double A0[]
Definition: expn.h:5
Eigen::internal::selfadjoint_product_impl< Lhs, 0, true, Rhs, RhsMode, false >::Scalar
Product< Lhs, Rhs >::Scalar Scalar
Definition: SelfadjointMatrixVector.h:247
Eigen::Transpose
Expression of the transpose of a matrix.
Definition: Transpose.h:52
EIGEN_PLAIN_ENUM_MIN
#define EIGEN_PLAIN_ENUM_MIN(a, b)
Definition: Macros.h:1288
Eigen::internal::true_type
Definition: Meta.h:96
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
Eigen::Product
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:71
gtsam.examples.DogLegOptimizerExample.run
def run(args)
Definition: DogLegOptimizerExample.py:21
Eigen::internal::Packet
Definition: ZVector/PacketMath.h:47
Eigen::Triplet< double >
conj
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:104
Eigen::Lower
@ Lower
Definition: Constants.h:209
Eigen::internal::selfadjoint_matrix_vector_product::run
static EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC void run(Index size, const Scalar *lhs, Index lhsStride, const Scalar *rhs, Scalar *res, Scalar alpha)
Definition: SelfadjointMatrixVector.h:41
Eigen::Map
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
Eigen::internal::pstore
EIGEN_DEVICE_FUNC void pstore(Scalar *to, const Packet &from)
Definition: GenericPacketMath.h:696
RealScalar
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
Eigen::internal::predux
EIGEN_DEVICE_FUNC unpacket_traits< Packet >::type predux(const Packet &a)
Definition: GenericPacketMath.h:875
Eigen::internal::conj_helper
Definition: ConjHelper.h:63
Eigen::internal::Rhs
@ Rhs
Definition: TensorContractionMapper.h:18
Eigen::internal::selfadjoint_matrix_vector_product
Definition: SelfadjointMatrixVector.h:24
Eigen::AlignedMax
@ AlignedMax
Definition: Constants.h:252
Eigen::internal::conj_helper::pmadd
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmadd(const LhsType &x, const RhsType &y, const ResultType &c) const
Definition: ConjHelper.h:67
A1
static const double A1[]
Definition: expn.h:6
Eigen::internal::blas_traits
Definition: BlasUtil.h:402
Eigen::internal::first_default_aligned
static Index first_default_aligned(const DenseBase< Derived > &m)
Definition: DenseCoeffsBase.h:650
internal
Definition: BandTriangularSolver.h:13
Eigen::numext::maxi
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: Eigen/src/Core/MathFunctions.h:1093
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:319
Eigen::internal::size
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_LOGICAL_XOR
#define EIGEN_LOGICAL_XOR(a, b)
Definition: Macros.h:1313
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
EIGEN_DONT_INLINE
#define EIGEN_DONT_INLINE
Definition: Macros.h:940
Eigen::internal::add_const_on_value_type
Definition: Meta.h:214


gtsam
Author(s):
autogenerated on Wed Jan 1 2025 04:03:08