bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 // * Conditional predicates intrinsic to the `Mutex` object
27 // * Shared/reader locks, in addition to standard exclusive/writer locks
28 // * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 // write access within the current scope.
34 //
35 // ReaderMutexLock
36 // - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 // access within the current scope.
38 //
39 // WriterMutexLock
40 // - Effectively an alias for `MutexLock` above, designed for use in
41 // distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 // Condition - (Preferred) Used to wait for a particular predicate that
47 // depends on state protected by the `Mutex` to become true.
48 // CondVar - A lower-level variant of `Condition` that relies on
49 // application code to explicitly signal the `CondVar` when
50 // a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <string>
64 
65 #include "absl/base/const_init.h"
66 #include "absl/base/internal/identity.h"
67 #include "absl/base/internal/low_level_alloc.h"
68 #include "absl/base/internal/thread_identity.h"
69 #include "absl/base/internal/tsan_mutex_interface.h"
70 #include "absl/base/port.h"
71 #include "absl/base/thread_annotations.h"
72 #include "absl/synchronization/internal/kernel_timeout.h"
73 #include "absl/synchronization/internal/per_thread_sem.h"
74 #include "absl/time/time.h"
75 
76 namespace absl {
78 
79 class Condition;
80 struct SynchWaitParams;
81 
82 // -----------------------------------------------------------------------------
83 // Mutex
84 // -----------------------------------------------------------------------------
85 //
86 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
87 // on some resource, typically a variable or data structure with associated
88 // invariants. Proper usage of mutexes prevents concurrent access by different
89 // threads to the same resource.
90 //
91 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
92 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
93 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
94 // Mutex. During the span of time between the Lock() and Unlock() operations,
95 // a mutex is said to be *held*. By design all mutexes support exclusive/write
96 // locks, as this is the most common way to use a mutex.
97 //
98 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
99 //
100 // | | Lock() | Unlock() |
101 // |----------------+------------+----------|
102 // | Free | Exclusive | invalid |
103 // | Exclusive | blocks | Free |
104 //
105 // Attempts to `Unlock()` must originate from the thread that performed the
106 // corresponding `Lock()` operation.
107 //
108 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
109 // is allowed to do anything on an invalid call, including but not limited to
110 // crashing with a useful error message, silently succeeding, or corrupting
111 // data structures. In debug mode, the implementation attempts to crash with a
112 // useful error message.
113 //
114 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
115 // is, however, approximately fair over long periods, and starvation-free for
116 // threads at the same priority.
117 //
118 // The lock/unlock primitives are now annotated with lock annotations
119 // defined in (base/thread_annotations.h). When writing multi-threaded code,
120 // you should use lock annotations whenever possible to document your lock
121 // synchronization policy. Besides acting as documentation, these annotations
122 // also help compilers or static analysis tools to identify and warn about
123 // issues that could potentially result in race conditions and deadlocks.
124 //
125 // For more information about the lock annotations, please see
126 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
127 // in the Clang documentation.
128 //
129 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
130 
131 class ABSL_LOCKABLE Mutex {
132  public:
133  // Creates a `Mutex` that is not held by anyone. This constructor is
134  // typically used for Mutexes allocated on the heap or the stack.
135  //
136  // To create `Mutex` instances with static storage duration
137  // (e.g. a namespace-scoped or global variable), see
138  // `Mutex::Mutex(absl::kConstInit)` below instead.
139  Mutex();
140 
141  // Creates a mutex with static storage duration. A global variable
142  // constructed this way avoids the lifetime issues that can occur on program
143  // startup and shutdown. (See absl/base/const_init.h.)
144  //
145  // For Mutexes allocated on the heap and stack, instead use the default
146  // constructor, which can interact more fully with the thread sanitizer.
147  //
148  // Example usage:
149  // namespace foo {
150  // ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
151  // }
152  explicit constexpr Mutex(absl::ConstInitType);
153 
154  ~Mutex();
155 
156  // Mutex::Lock()
157  //
158  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
159  // then acquires it exclusively. (This lock is also known as a "write lock.")
160  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
161 
162  // Mutex::Unlock()
163  //
164  // Releases this `Mutex` and returns it from the exclusive/write state to the
165  // free state. Calling thread must hold the `Mutex` exclusively.
166  void Unlock() ABSL_UNLOCK_FUNCTION();
167 
168  // Mutex::TryLock()
169  //
170  // If the mutex can be acquired without blocking, does so exclusively and
171  // returns `true`. Otherwise, returns `false`. Returns `true` with high
172  // probability if the `Mutex` was free.
173  bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
174 
175  // Mutex::AssertHeld()
176  //
177  // Return immediately if this thread holds the `Mutex` exclusively (in write
178  // mode). Otherwise, may report an error (typically by crashing with a
179  // diagnostic), or may return immediately.
180  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
181 
182  // ---------------------------------------------------------------------------
183  // Reader-Writer Locking
184  // ---------------------------------------------------------------------------
185 
186  // A Mutex can also be used as a starvation-free reader-writer lock.
187  // Neither read-locks nor write-locks are reentrant/recursive to avoid
188  // potential client programming errors.
189  //
190  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
191  // `Unlock()` and `TryLock()` methods for use within applications mixing
192  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
193  // manner can make locking behavior clearer when mixing read and write modes.
194  //
195  // Introducing reader locks necessarily complicates the `Mutex` state
196  // machine somewhat. The table below illustrates the allowed state transitions
197  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
198  // is held in shared mode; this occurs when another thread is blocked on a
199  // call to WriterLock().
200  //
201  // ---------------------------------------------------------------------------
202  // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
203  // ---------------------------------------------------------------------------
204  // State
205  // ---------------------------------------------------------------------------
206  // Free Exclusive invalid Shared(1) invalid
207  // Shared(1) blocks invalid Shared(2) or blocks Free
208  // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
209  // Exclusive blocks Free blocks invalid
210  // ---------------------------------------------------------------------------
211  //
212  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
213 
214  // Mutex::ReaderLock()
215  //
216  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
217  // or in shared mode, and then acquires a share of it. Note that
218  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
219  // on the mutex.
220 
221  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
222 
223  // Mutex::ReaderUnlock()
224  //
225  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
226  // the free state if this thread holds the last reader lock on the mutex. Note
227  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
228  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
229 
230  // Mutex::ReaderTryLock()
231  //
232  // If the mutex can be acquired without blocking, acquires this mutex for
233  // shared access and returns `true`. Otherwise, returns `false`. Returns
234  // `true` with high probability if the `Mutex` was free or shared.
235  bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
236 
237  // Mutex::AssertReaderHeld()
238  //
239  // Returns immediately if this thread holds the `Mutex` in at least shared
240  // mode (read mode). Otherwise, may report an error (typically by
241  // crashing with a diagnostic), or may return immediately.
242  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
243 
244  // Mutex::WriterLock()
245  // Mutex::WriterUnlock()
246  // Mutex::WriterTryLock()
247  //
248  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
249  //
250  // These methods may be used (along with the complementary `Reader*()`
251  // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
252  // etc.) from reader/writer lock usage.
253  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
254 
255  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
256 
258  return this->TryLock();
259  }
260 
261  // ---------------------------------------------------------------------------
262  // Conditional Critical Regions
263  // ---------------------------------------------------------------------------
264 
265  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
266  //
267  // * Use of `Mutex` member functions with `Condition` objects.
268  // * Use of the separate `CondVar` abstraction.
269  //
270  // In general, prefer use of `Condition` and the `Mutex` member functions
271  // listed below over `CondVar`. When there are multiple threads waiting on
272  // distinctly different conditions, however, a battery of `CondVar`s may be
273  // more efficient. This section discusses use of `Condition` objects.
274  //
275  // `Mutex` contains member functions for performing lock operations only under
276  // certain conditions, of class `Condition`. For correctness, the `Condition`
277  // must return a boolean that is a pure function, only of state protected by
278  // the `Mutex`. The condition must be invariant w.r.t. environmental state
279  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
280  // always be invoked with the mutex held in at least read mode, so you should
281  // not block it for long periods or sleep it on a timer.
282  //
283  // Since a condition must not depend directly on the current time, use
284  // `*WithTimeout()` member function variants to make your condition
285  // effectively true after a given duration, or `*WithDeadline()` variants to
286  // make your condition effectively true after a given time.
287  //
288  // The condition function should have no side-effects aside from debug
289  // logging; as a special exception, the function may acquire other mutexes
290  // provided it releases all those that it acquires. (This exception was
291  // required to allow logging.)
292 
293  // Mutex::Await()
294  //
295  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
296  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
297  // same mode in which it was previously held. If the condition is initially
298  // `true`, `Await()` *may* skip the release/re-acquire step.
299  //
300  // `Await()` requires that this thread holds this `Mutex` in some mode.
301  void Await(const Condition &cond);
302 
303  // Mutex::LockWhen()
304  // Mutex::ReaderLockWhen()
305  // Mutex::WriterLockWhen()
306  //
307  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
308  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
309  // logically equivalent to `*Lock(); Await();` though they may have different
310  // performance characteristics.
311  void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
312 
313  void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
314 
316  this->LockWhen(cond);
317  }
318 
319  // ---------------------------------------------------------------------------
320  // Mutex Variants with Timeouts/Deadlines
321  // ---------------------------------------------------------------------------
322 
323  // Mutex::AwaitWithTimeout()
324  // Mutex::AwaitWithDeadline()
325  //
326  // Unlocks this `Mutex` and blocks until simultaneously:
327  // - either `cond` is true or the {timeout has expired, deadline has passed}
328  // and
329  // - this `Mutex` can be reacquired,
330  // then reacquire this `Mutex` in the same mode in which it was previously
331  // held, returning `true` iff `cond` is `true` on return.
332  //
333  // If the condition is initially `true`, the implementation *may* skip the
334  // release/re-acquire step and return immediately.
335  //
336  // Deadlines in the past are equivalent to an immediate deadline.
337  // Negative timeouts are equivalent to a zero timeout.
338  //
339  // This method requires that this thread holds this `Mutex` in some mode.
340  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
341 
342  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
343 
344  // Mutex::LockWhenWithTimeout()
345  // Mutex::ReaderLockWhenWithTimeout()
346  // Mutex::WriterLockWhenWithTimeout()
347  //
348  // Blocks until simultaneously both:
349  // - either `cond` is `true` or the timeout has expired, and
350  // - this `Mutex` can be acquired,
351  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
352  // `true` on return.
353  //
354  // Negative timeouts are equivalent to a zero timeout.
355  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
357  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
361  return this->LockWhenWithTimeout(cond, timeout);
362  }
363 
364  // Mutex::LockWhenWithDeadline()
365  // Mutex::ReaderLockWhenWithDeadline()
366  // Mutex::WriterLockWhenWithDeadline()
367  //
368  // Blocks until simultaneously both:
369  // - either `cond` is `true` or the deadline has been passed, and
370  // - this `Mutex` can be acquired,
371  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
372  // on return.
373  //
374  // Deadlines in the past are equivalent to an immediate deadline.
375  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
377  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
381  return this->LockWhenWithDeadline(cond, deadline);
382  }
383 
384  // ---------------------------------------------------------------------------
385  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
386  // ---------------------------------------------------------------------------
387 
388  // Mutex::EnableInvariantDebugging()
389  //
390  // If `invariant`!=null and if invariant debugging has been enabled globally,
391  // cause `(*invariant)(arg)` to be called at moments when the invariant for
392  // this `Mutex` should hold (for example: just after acquire, just before
393  // release).
394  //
395  // The routine `invariant` should have no side-effects since it is not
396  // guaranteed how many times it will be called; it should check the invariant
397  // and crash if it does not hold. Enabling global invariant debugging may
398  // substantially reduce `Mutex` performance; it should be set only for
399  // non-production runs. Optimization options may also disable invariant
400  // checks.
401  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
402 
403  // Mutex::EnableDebugLog()
404  //
405  // Cause all subsequent uses of this `Mutex` to be logged via
406  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
407  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
408  //
409  // Note: This method substantially reduces `Mutex` performance.
410  void EnableDebugLog(const char *name);
411 
412  // Deadlock detection
413 
414  // Mutex::ForgetDeadlockInfo()
415  //
416  // Forget any deadlock-detection information previously gathered
417  // about this `Mutex`. Call this method in debug mode when the lock ordering
418  // of a `Mutex` changes.
419  void ForgetDeadlockInfo();
420 
421  // Mutex::AssertNotHeld()
422  //
423  // Return immediately if this thread does not hold this `Mutex` in any
424  // mode; otherwise, may report an error (typically by crashing with a
425  // diagnostic), or may return immediately.
426  //
427  // Currently this check is performed only if all of:
428  // - in debug mode
429  // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
430  // - number of locks concurrently held by this thread is not large.
431  // are true.
432  void AssertNotHeld() const;
433 
434  // Special cases.
435 
436  // A `MuHow` is a constant that indicates how a lock should be acquired.
437  // Internal implementation detail. Clients should ignore.
438  typedef const struct MuHowS *MuHow;
439 
440  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
441  //
442  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
443  // future use of `Mutex` within a fatal signal handler. This method is
444  // intended for use only for last-ditch attempts to log crash information.
445  // It does not guarantee that attempts to use Mutexes within the handler will
446  // not deadlock; it merely makes other faults less likely.
447  //
448  // WARNING: This routine must be invoked from a signal handler, and the
449  // signal handler must either loop forever or terminate the process.
450  // Attempts to return from (or `longjmp` out of) the signal handler once this
451  // call has been made may cause arbitrary program behaviour including
452  // crashes and deadlocks.
453  static void InternalAttemptToUseMutexInFatalSignalHandler();
454 
455  private:
456  std::atomic<intptr_t> mu_; // The Mutex state.
457 
458  // Post()/Wait() versus associated PerThreadSem; in class for required
459  // friendship with PerThreadSem.
460  static void IncrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w);
461  static bool DecrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w,
463 
464  // slow path acquire
465  void LockSlowLoop(SynchWaitParams *waitp, int flags);
466  // wrappers around LockSlowLoop()
467  bool LockSlowWithDeadline(MuHow how, const Condition *cond,
469  int flags);
470  void LockSlow(MuHow how, const Condition *cond,
472  // slow path release
473  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
474  // Common code between Await() and AwaitWithTimeout/Deadline()
475  bool AwaitCommon(const Condition &cond,
477  // Attempt to remove thread s from queue.
478  void TryRemove(base_internal::PerThreadSynch *s);
479  // Block a thread on mutex.
480  void Block(base_internal::PerThreadSynch *s);
481  // Wake a thread; return successor.
483 
484  friend class CondVar; // for access to Trans()/Fer().
485  void Trans(MuHow how); // used for CondVar->Mutex transfer
486  void Fer(
487  base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer
488 
489  // Catch the error of writing Mutex when intending MutexLock.
490  Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit)
491 
492  Mutex(const Mutex&) = delete;
493  Mutex& operator=(const Mutex&) = delete;
494 };
495 
496 // -----------------------------------------------------------------------------
497 // Mutex RAII Wrappers
498 // -----------------------------------------------------------------------------
499 
500 // MutexLock
501 //
502 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
503 // RAII.
504 //
505 // Example:
506 //
507 // Class Foo {
508 // public:
509 // Foo::Bar* Baz() {
510 // MutexLock lock(&mu_);
511 // ...
512 // return bar;
513 // }
514 //
515 // private:
516 // Mutex mu_;
517 // };
519  public:
520  // Constructors
521 
522  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
523  // guaranteed to be locked when this object is constructed. Requires that
524  // `mu` be dereferenceable.
526  this->mu_->Lock();
527  }
528 
529  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
530  // the above, the condition given by `cond` is also guaranteed to hold when
531  // this object is constructed.
532  explicit MutexLock(Mutex *mu, const Condition &cond)
534  : mu_(mu) {
535  this->mu_->LockWhen(cond);
536  }
537 
538  MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex)
539  MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex)
540  MutexLock& operator=(const MutexLock&) = delete;
541  MutexLock& operator=(MutexLock&&) = delete;
542 
543  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
544 
545  private:
546  Mutex *const mu_;
547 };
548 
549 // ReaderMutexLock
550 //
551 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
552 // releases a shared lock on a `Mutex` via RAII.
554  public:
556  mu->ReaderLock();
557  }
558 
559  explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
561  : mu_(mu) {
562  mu->ReaderLockWhen(cond);
563  }
564 
565  ReaderMutexLock(const ReaderMutexLock&) = delete;
566  ReaderMutexLock(ReaderMutexLock&&) = delete;
567  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
568  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
569 
570  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
571 
572  private:
573  Mutex *const mu_;
574 };
575 
576 // WriterMutexLock
577 //
578 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
579 // releases a write (exclusive) lock on a `Mutex` via RAII.
581  public:
583  : mu_(mu) {
584  mu->WriterLock();
585  }
586 
587  explicit WriterMutexLock(Mutex *mu, const Condition &cond)
589  : mu_(mu) {
590  mu->WriterLockWhen(cond);
591  }
592 
593  WriterMutexLock(const WriterMutexLock&) = delete;
594  WriterMutexLock(WriterMutexLock&&) = delete;
595  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
596  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
597 
598  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
599 
600  private:
601  Mutex *const mu_;
602 };
603 
604 // -----------------------------------------------------------------------------
605 // Condition
606 // -----------------------------------------------------------------------------
607 //
608 // As noted above, `Mutex` contains a number of member functions which take a
609 // `Condition` as an argument; clients can wait for conditions to become `true`
610 // before attempting to acquire the mutex. These sections are known as
611 // "condition critical" sections. To use a `Condition`, you simply need to
612 // construct it, and use within an appropriate `Mutex` member function;
613 // everything else in the `Condition` class is an implementation detail.
614 //
615 // A `Condition` is specified as a function pointer which returns a boolean.
616 // `Condition` functions should be pure functions -- their results should depend
617 // only on passed arguments, should not consult any external state (such as
618 // clocks), and should have no side-effects, aside from debug logging. Any
619 // objects that the function may access should be limited to those which are
620 // constant while the mutex is blocked on the condition (e.g. a stack variable),
621 // or objects of state protected explicitly by the mutex.
622 //
623 // No matter which construction is used for `Condition`, the underlying
624 // function pointer / functor / callable must not throw any
625 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
626 // the face of a throwing `Condition`. (When Abseil is allowed to depend
627 // on C++17, these function pointers will be explicitly marked
628 // `noexcept`; until then this requirement cannot be enforced in the
629 // type system.)
630 //
631 // Note: to use a `Condition`, you need only construct it and pass it to a
632 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
633 // constructor of one of the scope guard classes.
634 //
635 // Example using LockWhen/Unlock:
636 //
637 // // assume count_ is not internal reference count
638 // int count_ ABSL_GUARDED_BY(mu_);
639 // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
640 //
641 // mu_.LockWhen(count_is_zero);
642 // // ...
643 // mu_.Unlock();
644 //
645 // Example using a scope guard:
646 //
647 // {
648 // MutexLock lock(&mu_, count_is_zero);
649 // // ...
650 // }
651 //
652 // When multiple threads are waiting on exactly the same condition, make sure
653 // that they are constructed with the same parameters (same pointer to function
654 // + arg, or same pointer to object + method), so that the mutex implementation
655 // can avoid redundantly evaluating the same condition for each thread.
656 class Condition {
657  public:
658  // A Condition that returns the result of "(*func)(arg)"
659  Condition(bool (*func)(void *), void *arg);
660 
661  // Templated version for people who are averse to casts.
662  //
663  // To use a lambda, prepend it with unary plus, which converts the lambda
664  // into a function pointer:
665  // Condition(+[](T* t) { return ...; }, arg).
666  //
667  // Note: lambdas in this case must contain no bound variables.
668  //
669  // See class comment for performance advice.
670  template<typename T>
671  Condition(bool (*func)(T *), T *arg);
672 
673  // Templated version for invoking a method that returns a `bool`.
674  //
675  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
676  // `object->Method()`.
677  //
678  // Implementation Note: `absl::internal::identity` is used to allow methods to
679  // come from base classes. A simpler signature like
680  // `Condition(T*, bool (T::*)())` does not suffice.
681  template<typename T>
682  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
683 
684  // Same as above, for const members
685  template<typename T>
686  Condition(const T *object,
687  bool (absl::internal::identity<T>::type::* method)() const);
688 
689  // A Condition that returns the value of `*cond`
690  explicit Condition(const bool *cond);
691 
692  // Templated version for invoking a functor that returns a `bool`.
693  // This approach accepts pointers to non-mutable lambdas, `std::function`,
694  // the result of` std::bind` and user-defined functors that define
695  // `bool F::operator()() const`.
696  //
697  // Example:
698  //
699  // auto reached = [this, current]() {
700  // mu_.AssertReaderHeld(); // For annotalysis.
701  // return processed_ >= current;
702  // };
703  // mu_.Await(Condition(&reached));
704  //
705  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
706  // the lambda as it may be called when the mutex is being unlocked from a
707  // scope holding only a reader lock, which will make the assertion not
708  // fulfilled and crash the binary.
709 
710  // See class comment for performance advice. In particular, if there
711  // might be more than one waiter for the same condition, make sure
712  // that all waiters construct the condition with the same pointers.
713 
714  // Implementation note: The second template parameter ensures that this
715  // constructor doesn't participate in overload resolution if T doesn't have
716  // `bool operator() const`.
717  template <typename T, typename E = decltype(
718  static_cast<bool (T::*)() const>(&T::operator()))>
719  explicit Condition(const T *obj)
720  : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
721 
722  // A Condition that always returns `true`.
723  static const Condition kTrue;
724 
725  // Evaluates the condition.
726  bool Eval() const;
727 
728  // Returns `true` if the two conditions are guaranteed to return the same
729  // value if evaluated at the same time, `false` if the evaluation *may* return
730  // different results.
731  //
732  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
733  // components are the same. A null pointer is equivalent to a `true`
734  // condition.
735  static bool GuaranteedEqual(const Condition *a, const Condition *b);
736 
737  private:
738  typedef bool (*InternalFunctionType)(void * arg);
740  typedef bool (*InternalMethodCallerType)(void * arg,
741  InternalMethodType internal_method);
742 
743  bool (*eval_)(const Condition*); // Actual evaluator
744  InternalFunctionType function_; // function taking pointer returning bool
745  InternalMethodType method_; // method returning bool
746  void *arg_; // arg of function_ or object of method_
747 
748  Condition(); // null constructor used only to create kTrue
749 
750  // Various functions eval_ can point to:
751  static bool CallVoidPtrFunction(const Condition*);
752  template <typename T> static bool CastAndCallFunction(const Condition* c);
753  template <typename T> static bool CastAndCallMethod(const Condition* c);
754 };
755 
756 // -----------------------------------------------------------------------------
757 // CondVar
758 // -----------------------------------------------------------------------------
759 //
760 // A condition variable, reflecting state evaluated separately outside of the
761 // `Mutex` object, which can be signaled to wake callers.
762 // This class is not normally needed; use `Mutex` member functions such as
763 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
764 // with many threads and many conditions, `CondVar` may be faster.
765 //
766 // The implementation may deliver signals to any condition variable at
767 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
768 // result, upon being awoken, you must check the logical condition you have
769 // been waiting upon.
770 //
771 // Examples:
772 //
773 // Usage for a thread waiting for some condition C protected by mutex mu:
774 // mu.Lock();
775 // while (!C) { cv->Wait(&mu); } // releases and reacquires mu
776 // // C holds; process data
777 // mu.Unlock();
778 //
779 // Usage to wake T is:
780 // mu.Lock();
781 // // process data, possibly establishing C
782 // if (C) { cv->Signal(); }
783 // mu.Unlock();
784 //
785 // If C may be useful to more than one waiter, use `SignalAll()` instead of
786 // `Signal()`.
787 //
788 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
789 // the locked region; this usage can make reasoning about your program easier.
790 //
791 class CondVar {
792  public:
793  // A `CondVar` allocated on the heap or on the stack can use the this
794  // constructor.
795  CondVar();
796  ~CondVar();
797 
798  // CondVar::Wait()
799  //
800  // Atomically releases a `Mutex` and blocks on this condition variable.
801  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
802  // spurious wakeup), then reacquires the `Mutex` and returns.
803  //
804  // Requires and ensures that the current thread holds the `Mutex`.
805  void Wait(Mutex *mu);
806 
807  // CondVar::WaitWithTimeout()
808  //
809  // Atomically releases a `Mutex` and blocks on this condition variable.
810  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
811  // spurious wakeup), or until the timeout has expired, then reacquires
812  // the `Mutex` and returns.
813  //
814  // Returns true if the timeout has expired without this `CondVar`
815  // being signalled in any manner. If both the timeout has expired
816  // and this `CondVar` has been signalled, the implementation is free
817  // to return `true` or `false`.
818  //
819  // Requires and ensures that the current thread holds the `Mutex`.
821 
822  // CondVar::WaitWithDeadline()
823  //
824  // Atomically releases a `Mutex` and blocks on this condition variable.
825  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
826  // spurious wakeup), or until the deadline has passed, then reacquires
827  // the `Mutex` and returns.
828  //
829  // Deadlines in the past are equivalent to an immediate deadline.
830  //
831  // Returns true if the deadline has passed without this `CondVar`
832  // being signalled in any manner. If both the deadline has passed
833  // and this `CondVar` has been signalled, the implementation is free
834  // to return `true` or `false`.
835  //
836  // Requires and ensures that the current thread holds the `Mutex`.
837  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
838 
839  // CondVar::Signal()
840  //
841  // Signal this `CondVar`; wake at least one waiter if one exists.
842  void Signal();
843 
844  // CondVar::SignalAll()
845  //
846  // Signal this `CondVar`; wake all waiters.
847  void SignalAll();
848 
849  // CondVar::EnableDebugLog()
850  //
851  // Causes all subsequent uses of this `CondVar` to be logged via
852  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
853  // Note: this method substantially reduces `CondVar` performance.
854  void EnableDebugLog(const char *name);
855 
856  private:
860  std::atomic<intptr_t> cv_; // Condition variable state.
861  CondVar(const CondVar&) = delete;
862  CondVar& operator=(const CondVar&) = delete;
863 };
864 
865 
866 // Variants of MutexLock.
867 //
868 // If you find yourself using one of these, consider instead using
869 // Mutex::Unlock() and/or if-statements for clarity.
870 
871 // MutexLockMaybe
872 //
873 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
874 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
875  public:
877  : mu_(mu) {
878  if (this->mu_ != nullptr) {
879  this->mu_->Lock();
880  }
881  }
882 
883  explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
885  : mu_(mu) {
886  if (this->mu_ != nullptr) {
887  this->mu_->LockWhen(cond);
888  }
889  }
890 
892  if (this->mu_ != nullptr) { this->mu_->Unlock(); }
893  }
894 
895  private:
896  Mutex *const mu_;
897  MutexLockMaybe(const MutexLockMaybe&) = delete;
898  MutexLockMaybe(MutexLockMaybe&&) = delete;
899  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
900  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
901 };
902 
903 // ReleasableMutexLock
904 //
905 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
906 // mutex before destruction. `Release()` may be called at most once.
907 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
908  public:
910  : mu_(mu) {
911  this->mu_->Lock();
912  }
913 
916  : mu_(mu) {
917  this->mu_->LockWhen(cond);
918  }
919 
921  if (this->mu_ != nullptr) { this->mu_->Unlock(); }
922  }
923 
924  void Release() ABSL_UNLOCK_FUNCTION();
925 
926  private:
927  Mutex *mu_;
932 };
933 
934 inline Mutex::Mutex() : mu_(0) {
935  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
936 }
937 
938 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
939 
940 inline CondVar::CondVar() : cv_(0) {}
941 
942 // static
943 template <typename T>
945  typedef bool (T::*MemberType)();
946  MemberType rm = reinterpret_cast<MemberType>(c->method_);
947  T *x = static_cast<T *>(c->arg_);
948  return (x->*rm)();
949 }
950 
951 // static
952 template <typename T>
954  typedef bool (*FuncType)(T *);
955  FuncType fn = reinterpret_cast<FuncType>(c->function_);
956  T *x = static_cast<T *>(c->arg_);
957  return (*fn)(x);
958 }
959 
960 template <typename T>
961 inline Condition::Condition(bool (*func)(T *), T *arg)
962  : eval_(&CastAndCallFunction<T>),
963  function_(reinterpret_cast<InternalFunctionType>(func)),
964  method_(nullptr),
965  arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
966 
967 template <typename T>
968 inline Condition::Condition(T *object,
970  : eval_(&CastAndCallMethod<T>),
971  function_(nullptr),
972  method_(reinterpret_cast<InternalMethodType>(method)),
973  arg_(object) {}
974 
975 template <typename T>
976 inline Condition::Condition(const T *object,
978  const)
979  : eval_(&CastAndCallMethod<T>),
980  function_(nullptr),
981  method_(reinterpret_cast<InternalMethodType>(method)),
982  arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
983 
984 // Register a hook for profiling support.
985 //
986 // The function pointer registered here will be called whenever a mutex is
987 // contended. The callback is given the absl/base/cycleclock.h timestamp when
988 // waiting began.
989 //
990 // Calls to this function do not race or block, but there is no ordering
991 // guaranteed between calls to this function and call to the provided hook.
992 // In particular, the previously registered hook may still be called for some
993 // time after this function returns.
994 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
995 
996 // Register a hook for Mutex tracing.
997 //
998 // The function pointer registered here will be called whenever a mutex is
999 // contended. The callback is given an opaque handle to the contended mutex,
1000 // an event name, and the number of wait cycles (as measured by
1001 // //absl/base/internal/cycleclock.h, and which may not be real
1002 // "cycle" counts.)
1003 //
1004 // The only event name currently sent is "slow release".
1005 //
1006 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1007 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1008  int64_t wait_cycles));
1009 
1010 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
1011 // into a single interface, since they are only ever called in pairs.
1012 
1013 // Register a hook for CondVar tracing.
1014 //
1015 // The function pointer registered here will be called here on various CondVar
1016 // events. The callback is given an opaque handle to the CondVar object and
1017 // a string identifying the event. This is thread-safe, but only a single
1018 // tracer can be registered.
1019 //
1020 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1021 // "SignalAll wakeup".
1022 //
1023 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1024 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1025 
1026 // Register a hook for symbolizing stack traces in deadlock detector reports.
1027 //
1028 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1029 // into, and 'out_size' is the size of the buffer. This function can return
1030 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1031 // to 'out.'
1032 //
1033 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1034 //
1035 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1036 // ability to register a different hook for symbolizing stack traces will be
1037 // removed on or after 2023-05-01.
1038 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1039  "on or after 2023-05-01")
1040 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1041 
1042 // EnableMutexInvariantDebugging()
1043 //
1044 // Enable or disable global support for Mutex invariant debugging. If enabled,
1045 // then invariant predicates can be registered per-Mutex for debug checking.
1046 // See Mutex::EnableInvariantDebugging().
1047 void EnableMutexInvariantDebugging(bool enabled);
1048 
1049 // When in debug mode, and when the feature has been enabled globally, the
1050 // implementation will keep track of lock ordering and complain (or optionally
1051 // crash) if a cycle is detected in the acquired-before graph.
1052 
1053 // Possible modes of operation for the deadlock detector in debug mode.
1054 enum class OnDeadlockCycle {
1055  kIgnore, // Neither report on nor attempt to track cycles in lock ordering
1056  kReport, // Report lock cycles to stderr when detected
1057  kAbort, // Report lock cycles to stderr when detected, then abort
1058 };
1059 
1060 // SetMutexDeadlockDetectionMode()
1061 //
1062 // Enable or disable global support for detection of potential deadlocks
1063 // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
1064 // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
1065 // will be maintained internally, and detected cycles will be reported in
1066 // the manner chosen here.
1068 
1070 } // namespace absl
1071 
1072 // In some build configurations we pass --detect-odr-violations to the
1073 // gold linker. This causes it to flag weak symbol overrides as ODR
1074 // violations. Because ODR only applies to C++ and not C,
1075 // --detect-odr-violations ignores symbols not mangled with C++ names.
1076 // By changing our extension points to be extern "C", we dodge this
1077 // check.
1078 extern "C" {
1080 } // extern "C"
1081 
1082 #endif // ABSL_SYNCHRONIZATION_MUTEX_H_
absl::ReaderMutexLock::ReaderMutexLock
ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:555
obj
OPENSSL_EXPORT const ASN1_OBJECT * obj
Definition: x509.h:1671
ABSL_ASSERT_SHARED_LOCK
#define ABSL_ASSERT_SHARED_LOCK(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:268
absl::Mutex::Mutex
Mutex()
Definition: abseil-cpp/absl/synchronization/mutex.h:941
WriterMutexLock
#define WriterMutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:127
absl::Condition::InternalFunctionType
bool(* InternalFunctionType)(void *arg)
Definition: abseil-cpp/absl/synchronization/mutex.h:745
absl::MuHowS
Definition: abseil-cpp/absl/synchronization/mutex.cc:677
absl::RegisterSymbolizer
void RegisterSymbolizer(bool(*fn)(const void *pc, char *out, int out_size))
Definition: abseil-cpp/absl/synchronization/mutex.cc:125
absl::WriterMutexLock::WriterMutexLock
WriterMutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:587
MutexLock
#define MutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:125
const
#define const
Definition: bloaty/third_party/zlib/zconf.h:230
bool
bool
Definition: setup_once.h:312
absl::MutexLockMaybe::MutexLockMaybe
MutexLockMaybe(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:883
absl::Condition::CallVoidPtrFunction
static bool CallVoidPtrFunction(const Condition *)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2758
absl::MutexLock::MutexLock
MutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:532
invariant
void(* invariant)(void *arg)
Definition: abseil-cpp/absl/synchronization/mutex.cc:308
absl::Time
Definition: third_party/abseil-cpp/absl/time/time.h:642
fix_build_deps.c
list c
Definition: fix_build_deps.py:490
cv_
std::condition_variable cv_
Definition: client_callback_end2end_test.cc:733
absl::WriterMutexLock::~WriterMutexLock
~WriterMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:598
mutex
static uv_mutex_t mutex
Definition: threadpool.c:34
absl::Mutex
Definition: abseil-cpp/absl/synchronization/mutex.h:131
absl::MutexLock::MutexLock
MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:525
absl::Mutex::WriterUnlock
void WriterUnlock() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:255
absl::Mutex::WriterLockWhen
void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:315
absl::Condition::eval_
bool(* eval_)(const Condition *)
Definition: abseil-cpp/absl/synchronization/mutex.h:750
mode
const char int mode
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:135
setup.name
name
Definition: setup.py:542
absl::ReleasableMutexLock::~ReleasableMutexLock
~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:920
run_xds_tests.delete
delete
Definition: run_xds_tests.py:3329
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::OnDeadlockCycle
OnDeadlockCycle
Definition: abseil-cpp/absl/synchronization/mutex.h:1062
absl::CondVar::operator=
CondVar & operator=(const CondVar &)=delete
absl::base_internal::PerThreadSynch
Definition: abseil-cpp/absl/base/internal/thread_identity.h:49
T
#define T(upbtypeconst, upbtype, ctype, default_value)
true
#define true
Definition: setup_once.h:324
mu_
Mutex mu_
Definition: oob_backend_metric.cc:115
absl::CondVar::Remove
void Remove(base_internal::PerThreadSynch *s)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2470
absl::CondVar::EnableDebugLog
void EnableDebugLog(const char *name)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2456
absl::MutexLockMaybe::MutexLockMaybe
MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:876
benchmark::Condition
std::condition_variable Condition
Definition: benchmark/src/mutex.h:69
absl::ReleasableMutexLock::ReleasableMutexLock
ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:909
absl::MutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:525
absl::OnDeadlockCycle::kIgnore
@ kIgnore
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::msg
const char * msg
Definition: abseil-cpp/absl/synchronization/mutex.cc:272
absl::CondVar::WaitCommon
bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2552
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
generate-asm-lcov.fn
fn
Definition: generate-asm-lcov.py:146
absl::WriterMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:587
mu
Mutex mu
Definition: server_config_selector_filter.cc:74
AbslInternalMutexYield
void ABSL_INTERNAL_C_SYMBOL() AbslInternalMutexYield()
Definition: abseil-cpp/absl/synchronization/mutex.cc:73
absl::MutexLockMaybe::~MutexLockMaybe
~MutexLockMaybe() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:891
ABSL_SHARED_TRYLOCK_FUNCTION
#define ABSL_SHARED_TRYLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:250
absl::Condition::arg_
void * arg_
Definition: abseil-cpp/absl/synchronization/mutex.h:753
cond
static uv_cond_t cond
Definition: threadpool.c:33
ABSL_TSAN_MUTEX_CREATE
#define ABSL_TSAN_MUTEX_CREATE(...)
Definition: abseil-cpp/absl/base/internal/tsan_mutex_interface.h:55
absl::internal::identity::type
T type
Definition: abseil-cpp/absl/base/internal/identity.h:27
absl::Condition::GuaranteedEqual
static bool GuaranteedEqual(const Condition *a, const Condition *b)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2774
arg
Definition: cmdline.cc:40
ABSL_EXCLUSIVE_TRYLOCK_FUNCTION
#define ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:243
absl::Condition::Condition
Condition(const T *obj)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:719
absl::Duration
Definition: third_party/abseil-cpp/absl/time/time.h:159
absl::CondVar::~CondVar
~CondVar()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2462
absl::synchronization_internal::KernelTimeout
Definition: abseil-cpp/absl/synchronization/internal/kernel_timeout.h:44
absl::Condition::InternalMethodCallerType
bool(* InternalMethodCallerType)(void *arg, InternalMethodType internal_method)
Definition: abseil-cpp/absl/synchronization/mutex.h:747
absl::ReaderMutexLock::ReaderMutexLock
ReaderMutexLock(Mutex *mu, const Condition &cond) ABSL_SHARED_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:559
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
absl::MutexLock::~MutexLock
~MutexLock() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:543
absl::Condition::Eval
bool Eval() const
Definition: abseil-cpp/absl/synchronization/mutex.cc:2769
absl::RegisterMutexTracer
void RegisterMutexTracer(void(*fn)(const char *msg, const void *obj, int64_t wait_cycles))
Definition: abseil-cpp/absl/synchronization/mutex.cc:116
absl::Condition
Definition: abseil-cpp/absl/synchronization/mutex.h:663
absl::Mutex::MuHow
const struct MuHowS * MuHow
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:438
absl::Condition::CastAndCallMethod
static bool CastAndCallMethod(const Condition *c)
Definition: abseil-cpp/absl/synchronization/mutex.h:951
rm
static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql)
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/upb.c:1477
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
absl::SynchWaitParams
Definition: abseil-cpp/absl/synchronization/mutex.cc:478
absl::Mutex::WriterTryLock
bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:257
ABSL_INTERNAL_C_SYMBOL
#define ABSL_INTERNAL_C_SYMBOL(x)
Definition: third_party/abseil-cpp/absl/base/config.h:172
absl::RegisterMutexProfiler
void RegisterMutexProfiler(void(*fn)(int64_t wait_cycles))
Definition: abseil-cpp/absl/synchronization/mutex.cc:112
absl::CondVar::CondVar
CondVar()
Definition: abseil-cpp/absl/synchronization/mutex.h:947
absl::CondVar::Wait
void Wait(Mutex *mu)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2628
absl::WriterMutexLock::WriterMutexLock
WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:582
absl::ConstInitType
ConstInitType
Definition: abseil-cpp/absl/base/const_init.h:69
absl::out_size
char int out_size
Definition: abseil-cpp/absl/synchronization/mutex.h:1048
absl::ReaderMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:560
func
const EVP_CIPHER *(* func)(void)
Definition: cipher_extra.c:73
ABSL_EXCLUSIVE_LOCK_FUNCTION
#define ABSL_EXCLUSIVE_LOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:207
absl::Condition::kTrue
static const Condition kTrue
Definition: abseil-cpp/absl/synchronization/mutex.h:730
cv
unsigned cv
Definition: cxa_demangle.cpp:4908
absl::RegisterCondVarTracer
void RegisterCondVarTracer(void(*fn)(const char *msg, const void *cv))
Definition: abseil-cpp/absl/synchronization/mutex.cc:121
absl::flags_internal
Definition: abseil-cpp/absl/flags/commandlineflag.h:40
ReaderMutexLock
#define ReaderMutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:126
absl::ReleasableMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:914
absl::CondVar
Definition: abseil-cpp/absl/synchronization/mutex.h:798
absl::Mutex::WriterLockWhenWithDeadline
bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:379
absl::ReaderMutexLock::~ReaderMutexLock
~ReaderMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:570
google::protobuf.internal::Mutex
WrappedMutex Mutex
Definition: bloaty/third_party/protobuf/src/google/protobuf/stubs/mutex.h:113
absl::Condition::Condition
Condition()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2749
arg
struct arg arg
absl::CondVar::cv_
std::atomic< intptr_t > cv_
Definition: abseil-cpp/absl/synchronization/mutex.h:867
absl::ReleasableMutexLock::ReleasableMutexLock
ReleasableMutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:914
absl::CondVar::SignalAll
void SignalAll()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2689
ABSL_SHARED_LOCK_FUNCTION
#define ABSL_SHARED_LOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:218
absl::CondVar::WaitWithDeadline
bool WaitWithDeadline(Mutex *mu, absl::Time deadline)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2624
ABSL_ATTRIBUTE_COLD
#define ABSL_ATTRIBUTE_COLD
Definition: abseil-cpp/absl/base/attributes.h:463
ABSL_ASSERT_EXCLUSIVE_LOCK
#define ABSL_ASSERT_EXCLUSIVE_LOCK(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:261
absl::EnableMutexInvariantDebugging
void EnableMutexInvariantDebugging(bool enabled)
Definition: abseil-cpp/absl/synchronization/mutex.cc:747
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
absl::out
char * out
Definition: abseil-cpp/absl/synchronization/mutex.h:1048
absl::Mutex::WriterLockWhenWithTimeout
bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:359
absl::CondVar::Signal
void Signal()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2649
absl::Mutex::Mutex
Mutex(const volatile Mutex *)
Definition: bloaty/third_party/abseil-cpp/absl/synchronization/mutex.h:490
absl::ABSL_DEPRECATED
ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " "on or after 2023-05-01") void RegisterSymbolizer(bool(*fn)(const void *pc
absl::Condition::CastAndCallFunction
static bool CastAndCallFunction(const Condition *c)
Definition: abseil-cpp/absl/synchronization/mutex.h:960
method
NSString * method
Definition: ProtoMethod.h:28
ABSL_UNLOCK_FUNCTION
#define ABSL_UNLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:228
absl::OnDeadlockCycle::kAbort
@ kAbort
absl::Condition::function_
InternalFunctionType function_
Definition: abseil-cpp/absl/synchronization/mutex.h:751
ABSL_LOCKABLE
#define ABSL_LOCKABLE
Definition: abseil-cpp/absl/base/thread_annotations.h:183
absl::SetMutexDeadlockDetectionMode
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)
Definition: abseil-cpp/absl/synchronization/mutex.cc:762
absl::CondVar::WaitWithTimeout
bool WaitWithTimeout(Mutex *mu, absl::Duration timeout)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2620
absl::MutexLockMaybe
Definition: abseil-cpp/absl/synchronization/mutex.h:881
timeout
uv_timer_t timeout
Definition: libuv/docs/code/uvwget/main.c:9
absl::Condition::method_
InternalMethodType method_
Definition: abseil-cpp/absl/synchronization/mutex.h:752
ABSL_SCOPED_LOCKABLE
#define ABSL_SCOPED_LOCKABLE
Definition: abseil-cpp/absl/base/thread_annotations.h:196
absl::OnDeadlockCycle::kReport
@ kReport
absl::Condition::InternalMethodType
bool(Condition::* InternalMethodType)()
Definition: abseil-cpp/absl/synchronization/mutex.h:746
absl::CondVar::Wakeup
void Wakeup(base_internal::PerThreadSynch *w)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2636


grpc
Author(s):
autogenerated on Fri May 16 2025 02:59:31