abseil-cpp/absl/synchronization/mutex.h
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 // * Conditional predicates intrinsic to the `Mutex` object
27 // * Shared/reader locks, in addition to standard exclusive/writer locks
28 // * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 // write access within the current scope.
34 //
35 // ReaderMutexLock
36 // - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 // access within the current scope.
38 //
39 // WriterMutexLock
40 // - Effectively an alias for `MutexLock` above, designed for use in
41 // distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 // Condition - (Preferred) Used to wait for a particular predicate that
47 // depends on state protected by the `Mutex` to become true.
48 // CondVar - A lower-level variant of `Condition` that relies on
49 // application code to explicitly signal the `CondVar` when
50 // a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <string>
64 
65 #include "absl/base/const_init.h"
66 #include "absl/base/internal/identity.h"
67 #include "absl/base/internal/low_level_alloc.h"
68 #include "absl/base/internal/thread_identity.h"
69 #include "absl/base/internal/tsan_mutex_interface.h"
70 #include "absl/base/port.h"
71 #include "absl/base/thread_annotations.h"
72 #include "absl/synchronization/internal/kernel_timeout.h"
73 #include "absl/synchronization/internal/per_thread_sem.h"
74 #include "absl/time/time.h"
75 
76 namespace absl {
78 
79 class Condition;
80 struct SynchWaitParams;
81 
82 // -----------------------------------------------------------------------------
83 // Mutex
84 // -----------------------------------------------------------------------------
85 //
86 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
87 // on some resource, typically a variable or data structure with associated
88 // invariants. Proper usage of mutexes prevents concurrent access by different
89 // threads to the same resource.
90 //
91 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
92 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
93 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
94 // Mutex. During the span of time between the Lock() and Unlock() operations,
95 // a mutex is said to be *held*. By design all mutexes support exclusive/write
96 // locks, as this is the most common way to use a mutex.
97 //
98 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
99 //
100 // | | Lock() | Unlock() |
101 // |----------------+------------+----------|
102 // | Free | Exclusive | invalid |
103 // | Exclusive | blocks | Free |
104 //
105 // Attempts to `Unlock()` must originate from the thread that performed the
106 // corresponding `Lock()` operation.
107 //
108 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
109 // is allowed to do anything on an invalid call, including but not limited to
110 // crashing with a useful error message, silently succeeding, or corrupting
111 // data structures. In debug mode, the implementation attempts to crash with a
112 // useful error message.
113 //
114 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
115 // is, however, approximately fair over long periods, and starvation-free for
116 // threads at the same priority.
117 //
118 // The lock/unlock primitives are now annotated with lock annotations
119 // defined in (base/thread_annotations.h). When writing multi-threaded code,
120 // you should use lock annotations whenever possible to document your lock
121 // synchronization policy. Besides acting as documentation, these annotations
122 // also help compilers or static analysis tools to identify and warn about
123 // issues that could potentially result in race conditions and deadlocks.
124 //
125 // For more information about the lock annotations, please see
126 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
127 // in the Clang documentation.
128 //
129 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
130 
132  public:
133  // Creates a `Mutex` that is not held by anyone. This constructor is
134  // typically used for Mutexes allocated on the heap or the stack.
135  //
136  // To create `Mutex` instances with static storage duration
137  // (e.g. a namespace-scoped or global variable), see
138  // `Mutex::Mutex(absl::kConstInit)` below instead.
139  Mutex();
140 
141  // Creates a mutex with static storage duration. A global variable
142  // constructed this way avoids the lifetime issues that can occur on program
143  // startup and shutdown. (See absl/base/const_init.h.)
144  //
145  // For Mutexes allocated on the heap and stack, instead use the default
146  // constructor, which can interact more fully with the thread sanitizer.
147  //
148  // Example usage:
149  // namespace foo {
150  // ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
151  // }
152  explicit constexpr Mutex(absl::ConstInitType);
153 
154  ~Mutex();
155 
156  // Mutex::Lock()
157  //
158  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
159  // then acquires it exclusively. (This lock is also known as a "write lock.")
160  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
161 
162  // Mutex::Unlock()
163  //
164  // Releases this `Mutex` and returns it from the exclusive/write state to the
165  // free state. Calling thread must hold the `Mutex` exclusively.
166  void Unlock() ABSL_UNLOCK_FUNCTION();
167 
168  // Mutex::TryLock()
169  //
170  // If the mutex can be acquired without blocking, does so exclusively and
171  // returns `true`. Otherwise, returns `false`. Returns `true` with high
172  // probability if the `Mutex` was free.
173  bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
174 
175  // Mutex::AssertHeld()
176  //
177  // Require that the mutex be held exclusively (write mode) by this thread.
178  //
179  // If the mutex is not currently held by this thread, this function may report
180  // an error (typically by crashing with a diagnostic) or it may do nothing.
181  // This function is intended only as a tool to assist debugging; it doesn't
182  // guarantee correctness.
183  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
184 
185  // ---------------------------------------------------------------------------
186  // Reader-Writer Locking
187  // ---------------------------------------------------------------------------
188 
189  // A Mutex can also be used as a starvation-free reader-writer lock.
190  // Neither read-locks nor write-locks are reentrant/recursive to avoid
191  // potential client programming errors.
192  //
193  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
194  // `Unlock()` and `TryLock()` methods for use within applications mixing
195  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
196  // manner can make locking behavior clearer when mixing read and write modes.
197  //
198  // Introducing reader locks necessarily complicates the `Mutex` state
199  // machine somewhat. The table below illustrates the allowed state transitions
200  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
201  // is held in shared mode; this occurs when another thread is blocked on a
202  // call to WriterLock().
203  //
204  // ---------------------------------------------------------------------------
205  // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
206  // ---------------------------------------------------------------------------
207  // State
208  // ---------------------------------------------------------------------------
209  // Free Exclusive invalid Shared(1) invalid
210  // Shared(1) blocks invalid Shared(2) or blocks Free
211  // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
212  // Exclusive blocks Free blocks invalid
213  // ---------------------------------------------------------------------------
214  //
215  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
216 
217  // Mutex::ReaderLock()
218  //
219  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
220  // or in shared mode, and then acquires a share of it. Note that
221  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
222  // on the mutex.
223 
224  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
225 
226  // Mutex::ReaderUnlock()
227  //
228  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
229  // the free state if this thread holds the last reader lock on the mutex. Note
230  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
231  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
232 
233  // Mutex::ReaderTryLock()
234  //
235  // If the mutex can be acquired without blocking, acquires this mutex for
236  // shared access and returns `true`. Otherwise, returns `false`. Returns
237  // `true` with high probability if the `Mutex` was free or shared.
238  bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
239 
240  // Mutex::AssertReaderHeld()
241  //
242  // Require that the mutex be held at least in shared mode (read mode) by this
243  // thread.
244  //
245  // If the mutex is not currently held by this thread, this function may report
246  // an error (typically by crashing with a diagnostic) or it may do nothing.
247  // This function is intended only as a tool to assist debugging; it doesn't
248  // guarantee correctness.
249  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
250 
251  // Mutex::WriterLock()
252  // Mutex::WriterUnlock()
253  // Mutex::WriterTryLock()
254  //
255  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
256  //
257  // These methods may be used (along with the complementary `Reader*()`
258  // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
259  // etc.) from reader/writer lock usage.
260  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
261 
262  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
263 
265  return this->TryLock();
266  }
267 
268  // ---------------------------------------------------------------------------
269  // Conditional Critical Regions
270  // ---------------------------------------------------------------------------
271 
272  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
273  //
274  // * Use of `Mutex` member functions with `Condition` objects.
275  // * Use of the separate `CondVar` abstraction.
276  //
277  // In general, prefer use of `Condition` and the `Mutex` member functions
278  // listed below over `CondVar`. When there are multiple threads waiting on
279  // distinctly different conditions, however, a battery of `CondVar`s may be
280  // more efficient. This section discusses use of `Condition` objects.
281  //
282  // `Mutex` contains member functions for performing lock operations only under
283  // certain conditions, of class `Condition`. For correctness, the `Condition`
284  // must return a boolean that is a pure function, only of state protected by
285  // the `Mutex`. The condition must be invariant w.r.t. environmental state
286  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
287  // always be invoked with the mutex held in at least read mode, so you should
288  // not block it for long periods or sleep it on a timer.
289  //
290  // Since a condition must not depend directly on the current time, use
291  // `*WithTimeout()` member function variants to make your condition
292  // effectively true after a given duration, or `*WithDeadline()` variants to
293  // make your condition effectively true after a given time.
294  //
295  // The condition function should have no side-effects aside from debug
296  // logging; as a special exception, the function may acquire other mutexes
297  // provided it releases all those that it acquires. (This exception was
298  // required to allow logging.)
299 
300  // Mutex::Await()
301  //
302  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
303  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
304  // same mode in which it was previously held. If the condition is initially
305  // `true`, `Await()` *may* skip the release/re-acquire step.
306  //
307  // `Await()` requires that this thread holds this `Mutex` in some mode.
308  void Await(const Condition &cond);
309 
310  // Mutex::LockWhen()
311  // Mutex::ReaderLockWhen()
312  // Mutex::WriterLockWhen()
313  //
314  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
315  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
316  // logically equivalent to `*Lock(); Await();` though they may have different
317  // performance characteristics.
318  void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
319 
320  void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
321 
323  this->LockWhen(cond);
324  }
325 
326  // ---------------------------------------------------------------------------
327  // Mutex Variants with Timeouts/Deadlines
328  // ---------------------------------------------------------------------------
329 
330  // Mutex::AwaitWithTimeout()
331  // Mutex::AwaitWithDeadline()
332  //
333  // Unlocks this `Mutex` and blocks until simultaneously:
334  // - either `cond` is true or the {timeout has expired, deadline has passed}
335  // and
336  // - this `Mutex` can be reacquired,
337  // then reacquire this `Mutex` in the same mode in which it was previously
338  // held, returning `true` iff `cond` is `true` on return.
339  //
340  // If the condition is initially `true`, the implementation *may* skip the
341  // release/re-acquire step and return immediately.
342  //
343  // Deadlines in the past are equivalent to an immediate deadline.
344  // Negative timeouts are equivalent to a zero timeout.
345  //
346  // This method requires that this thread holds this `Mutex` in some mode.
347  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
348 
349  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
350 
351  // Mutex::LockWhenWithTimeout()
352  // Mutex::ReaderLockWhenWithTimeout()
353  // Mutex::WriterLockWhenWithTimeout()
354  //
355  // Blocks until simultaneously both:
356  // - either `cond` is `true` or the timeout has expired, and
357  // - this `Mutex` can be acquired,
358  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
359  // `true` on return.
360  //
361  // Negative timeouts are equivalent to a zero timeout.
362  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
364  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
368  return this->LockWhenWithTimeout(cond, timeout);
369  }
370 
371  // Mutex::LockWhenWithDeadline()
372  // Mutex::ReaderLockWhenWithDeadline()
373  // Mutex::WriterLockWhenWithDeadline()
374  //
375  // Blocks until simultaneously both:
376  // - either `cond` is `true` or the deadline has been passed, and
377  // - this `Mutex` can be acquired,
378  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
379  // on return.
380  //
381  // Deadlines in the past are equivalent to an immediate deadline.
382  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
384  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
388  return this->LockWhenWithDeadline(cond, deadline);
389  }
390 
391  // ---------------------------------------------------------------------------
392  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
393  // ---------------------------------------------------------------------------
394 
395  // Mutex::EnableInvariantDebugging()
396  //
397  // If `invariant`!=null and if invariant debugging has been enabled globally,
398  // cause `(*invariant)(arg)` to be called at moments when the invariant for
399  // this `Mutex` should hold (for example: just after acquire, just before
400  // release).
401  //
402  // The routine `invariant` should have no side-effects since it is not
403  // guaranteed how many times it will be called; it should check the invariant
404  // and crash if it does not hold. Enabling global invariant debugging may
405  // substantially reduce `Mutex` performance; it should be set only for
406  // non-production runs. Optimization options may also disable invariant
407  // checks.
408  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
409 
410  // Mutex::EnableDebugLog()
411  //
412  // Cause all subsequent uses of this `Mutex` to be logged via
413  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
414  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
415  //
416  // Note: This method substantially reduces `Mutex` performance.
417  void EnableDebugLog(const char *name);
418 
419  // Deadlock detection
420 
421  // Mutex::ForgetDeadlockInfo()
422  //
423  // Forget any deadlock-detection information previously gathered
424  // about this `Mutex`. Call this method in debug mode when the lock ordering
425  // of a `Mutex` changes.
426  void ForgetDeadlockInfo();
427 
428  // Mutex::AssertNotHeld()
429  //
430  // Return immediately if this thread does not hold this `Mutex` in any
431  // mode; otherwise, may report an error (typically by crashing with a
432  // diagnostic), or may return immediately.
433  //
434  // Currently this check is performed only if all of:
435  // - in debug mode
436  // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
437  // - number of locks concurrently held by this thread is not large.
438  // are true.
439  void AssertNotHeld() const;
440 
441  // Special cases.
442 
443  // A `MuHow` is a constant that indicates how a lock should be acquired.
444  // Internal implementation detail. Clients should ignore.
445  typedef const struct MuHowS *MuHow;
446 
447  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
448  //
449  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
450  // future use of `Mutex` within a fatal signal handler. This method is
451  // intended for use only for last-ditch attempts to log crash information.
452  // It does not guarantee that attempts to use Mutexes within the handler will
453  // not deadlock; it merely makes other faults less likely.
454  //
455  // WARNING: This routine must be invoked from a signal handler, and the
456  // signal handler must either loop forever or terminate the process.
457  // Attempts to return from (or `longjmp` out of) the signal handler once this
458  // call has been made may cause arbitrary program behaviour including
459  // crashes and deadlocks.
460  static void InternalAttemptToUseMutexInFatalSignalHandler();
461 
462  private:
463  std::atomic<intptr_t> mu_; // The Mutex state.
464 
465  // Post()/Wait() versus associated PerThreadSem; in class for required
466  // friendship with PerThreadSem.
467  static void IncrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w);
468  static bool DecrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w,
470 
471  // slow path acquire
472  void LockSlowLoop(SynchWaitParams *waitp, int flags);
473  // wrappers around LockSlowLoop()
474  bool LockSlowWithDeadline(MuHow how, const Condition *cond,
476  int flags);
477  void LockSlow(MuHow how, const Condition *cond,
479  // slow path release
480  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
481  // Common code between Await() and AwaitWithTimeout/Deadline()
482  bool AwaitCommon(const Condition &cond,
484  // Attempt to remove thread s from queue.
485  void TryRemove(base_internal::PerThreadSynch *s);
486  // Block a thread on mutex.
487  void Block(base_internal::PerThreadSynch *s);
488  // Wake a thread; return successor.
490 
491  friend class CondVar; // for access to Trans()/Fer().
492  void Trans(MuHow how); // used for CondVar->Mutex transfer
493  void Fer(
494  base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer
495 
496  // Catch the error of writing Mutex when intending MutexLock.
497  Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit)
498 
499  Mutex(const Mutex&) = delete;
500  Mutex& operator=(const Mutex&) = delete;
501 };
502 
503 // -----------------------------------------------------------------------------
504 // Mutex RAII Wrappers
505 // -----------------------------------------------------------------------------
506 
507 // MutexLock
508 //
509 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
510 // RAII.
511 //
512 // Example:
513 //
514 // Class Foo {
515 // public:
516 // Foo::Bar* Baz() {
517 // MutexLock lock(&mu_);
518 // ...
519 // return bar;
520 // }
521 //
522 // private:
523 // Mutex mu_;
524 // };
526  public:
527  // Constructors
528 
529  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
530  // guaranteed to be locked when this object is constructed. Requires that
531  // `mu` be dereferenceable.
533  this->mu_->Lock();
534  }
535 
536  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
537  // the above, the condition given by `cond` is also guaranteed to hold when
538  // this object is constructed.
539  explicit MutexLock(Mutex *mu, const Condition &cond)
541  : mu_(mu) {
542  this->mu_->LockWhen(cond);
543  }
544 
545  MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex)
546  MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex)
547  MutexLock& operator=(const MutexLock&) = delete;
548  MutexLock& operator=(MutexLock&&) = delete;
549 
550  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
551 
552  private:
553  Mutex *const mu_;
554 };
555 
556 // ReaderMutexLock
557 //
558 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
559 // releases a shared lock on a `Mutex` via RAII.
561  public:
563  mu->ReaderLock();
564  }
565 
566  explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
568  : mu_(mu) {
569  mu->ReaderLockWhen(cond);
570  }
571 
572  ReaderMutexLock(const ReaderMutexLock&) = delete;
573  ReaderMutexLock(ReaderMutexLock&&) = delete;
574  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
575  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
576 
577  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
578 
579  private:
580  Mutex *const mu_;
581 };
582 
583 // WriterMutexLock
584 //
585 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
586 // releases a write (exclusive) lock on a `Mutex` via RAII.
588  public:
590  : mu_(mu) {
591  mu->WriterLock();
592  }
593 
594  explicit WriterMutexLock(Mutex *mu, const Condition &cond)
596  : mu_(mu) {
597  mu->WriterLockWhen(cond);
598  }
599 
600  WriterMutexLock(const WriterMutexLock&) = delete;
601  WriterMutexLock(WriterMutexLock&&) = delete;
602  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
603  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
604 
605  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
606 
607  private:
608  Mutex *const mu_;
609 };
610 
611 // -----------------------------------------------------------------------------
612 // Condition
613 // -----------------------------------------------------------------------------
614 //
615 // As noted above, `Mutex` contains a number of member functions which take a
616 // `Condition` as an argument; clients can wait for conditions to become `true`
617 // before attempting to acquire the mutex. These sections are known as
618 // "condition critical" sections. To use a `Condition`, you simply need to
619 // construct it, and use within an appropriate `Mutex` member function;
620 // everything else in the `Condition` class is an implementation detail.
621 //
622 // A `Condition` is specified as a function pointer which returns a boolean.
623 // `Condition` functions should be pure functions -- their results should depend
624 // only on passed arguments, should not consult any external state (such as
625 // clocks), and should have no side-effects, aside from debug logging. Any
626 // objects that the function may access should be limited to those which are
627 // constant while the mutex is blocked on the condition (e.g. a stack variable),
628 // or objects of state protected explicitly by the mutex.
629 //
630 // No matter which construction is used for `Condition`, the underlying
631 // function pointer / functor / callable must not throw any
632 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
633 // the face of a throwing `Condition`. (When Abseil is allowed to depend
634 // on C++17, these function pointers will be explicitly marked
635 // `noexcept`; until then this requirement cannot be enforced in the
636 // type system.)
637 //
638 // Note: to use a `Condition`, you need only construct it and pass it to a
639 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
640 // constructor of one of the scope guard classes.
641 //
642 // Example using LockWhen/Unlock:
643 //
644 // // assume count_ is not internal reference count
645 // int count_ ABSL_GUARDED_BY(mu_);
646 // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
647 //
648 // mu_.LockWhen(count_is_zero);
649 // // ...
650 // mu_.Unlock();
651 //
652 // Example using a scope guard:
653 //
654 // {
655 // MutexLock lock(&mu_, count_is_zero);
656 // // ...
657 // }
658 //
659 // When multiple threads are waiting on exactly the same condition, make sure
660 // that they are constructed with the same parameters (same pointer to function
661 // + arg, or same pointer to object + method), so that the mutex implementation
662 // can avoid redundantly evaluating the same condition for each thread.
663 class Condition {
664  public:
665  // A Condition that returns the result of "(*func)(arg)"
666  Condition(bool (*func)(void *), void *arg);
667 
668  // Templated version for people who are averse to casts.
669  //
670  // To use a lambda, prepend it with unary plus, which converts the lambda
671  // into a function pointer:
672  // Condition(+[](T* t) { return ...; }, arg).
673  //
674  // Note: lambdas in this case must contain no bound variables.
675  //
676  // See class comment for performance advice.
677  template<typename T>
678  Condition(bool (*func)(T *), T *arg);
679 
680  // Templated version for invoking a method that returns a `bool`.
681  //
682  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
683  // `object->Method()`.
684  //
685  // Implementation Note: `absl::internal::identity` is used to allow methods to
686  // come from base classes. A simpler signature like
687  // `Condition(T*, bool (T::*)())` does not suffice.
688  template<typename T>
689  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
690 
691  // Same as above, for const members
692  template<typename T>
693  Condition(const T *object,
694  bool (absl::internal::identity<T>::type::* method)() const);
695 
696  // A Condition that returns the value of `*cond`
697  explicit Condition(const bool *cond);
698 
699  // Templated version for invoking a functor that returns a `bool`.
700  // This approach accepts pointers to non-mutable lambdas, `std::function`,
701  // the result of` std::bind` and user-defined functors that define
702  // `bool F::operator()() const`.
703  //
704  // Example:
705  //
706  // auto reached = [this, current]() {
707  // mu_.AssertReaderHeld(); // For annotalysis.
708  // return processed_ >= current;
709  // };
710  // mu_.Await(Condition(&reached));
711  //
712  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
713  // the lambda as it may be called when the mutex is being unlocked from a
714  // scope holding only a reader lock, which will make the assertion not
715  // fulfilled and crash the binary.
716 
717  // See class comment for performance advice. In particular, if there
718  // might be more than one waiter for the same condition, make sure
719  // that all waiters construct the condition with the same pointers.
720 
721  // Implementation note: The second template parameter ensures that this
722  // constructor doesn't participate in overload resolution if T doesn't have
723  // `bool operator() const`.
724  template <typename T, typename E = decltype(
725  static_cast<bool (T::*)() const>(&T::operator()))>
726  explicit Condition(const T *obj)
727  : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
728 
729  // A Condition that always returns `true`.
730  static const Condition kTrue;
731 
732  // Evaluates the condition.
733  bool Eval() const;
734 
735  // Returns `true` if the two conditions are guaranteed to return the same
736  // value if evaluated at the same time, `false` if the evaluation *may* return
737  // different results.
738  //
739  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
740  // components are the same. A null pointer is equivalent to a `true`
741  // condition.
742  static bool GuaranteedEqual(const Condition *a, const Condition *b);
743 
744  private:
745  typedef bool (*InternalFunctionType)(void * arg);
747  typedef bool (*InternalMethodCallerType)(void * arg,
748  InternalMethodType internal_method);
749 
750  bool (*eval_)(const Condition*); // Actual evaluator
751  InternalFunctionType function_; // function taking pointer returning bool
752  InternalMethodType method_; // method returning bool
753  void *arg_; // arg of function_ or object of method_
754 
755  Condition(); // null constructor used only to create kTrue
756 
757  // Various functions eval_ can point to:
758  static bool CallVoidPtrFunction(const Condition*);
759  template <typename T> static bool CastAndCallFunction(const Condition* c);
760  template <typename T> static bool CastAndCallMethod(const Condition* c);
761 };
762 
763 // -----------------------------------------------------------------------------
764 // CondVar
765 // -----------------------------------------------------------------------------
766 //
767 // A condition variable, reflecting state evaluated separately outside of the
768 // `Mutex` object, which can be signaled to wake callers.
769 // This class is not normally needed; use `Mutex` member functions such as
770 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
771 // with many threads and many conditions, `CondVar` may be faster.
772 //
773 // The implementation may deliver signals to any condition variable at
774 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
775 // result, upon being awoken, you must check the logical condition you have
776 // been waiting upon.
777 //
778 // Examples:
779 //
780 // Usage for a thread waiting for some condition C protected by mutex mu:
781 // mu.Lock();
782 // while (!C) { cv->Wait(&mu); } // releases and reacquires mu
783 // // C holds; process data
784 // mu.Unlock();
785 //
786 // Usage to wake T is:
787 // mu.Lock();
788 // // process data, possibly establishing C
789 // if (C) { cv->Signal(); }
790 // mu.Unlock();
791 //
792 // If C may be useful to more than one waiter, use `SignalAll()` instead of
793 // `Signal()`.
794 //
795 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
796 // the locked region; this usage can make reasoning about your program easier.
797 //
798 class CondVar {
799  public:
800  // A `CondVar` allocated on the heap or on the stack can use the this
801  // constructor.
802  CondVar();
803  ~CondVar();
804 
805  // CondVar::Wait()
806  //
807  // Atomically releases a `Mutex` and blocks on this condition variable.
808  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
809  // spurious wakeup), then reacquires the `Mutex` and returns.
810  //
811  // Requires and ensures that the current thread holds the `Mutex`.
812  void Wait(Mutex *mu);
813 
814  // CondVar::WaitWithTimeout()
815  //
816  // Atomically releases a `Mutex` and blocks on this condition variable.
817  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
818  // spurious wakeup), or until the timeout has expired, then reacquires
819  // the `Mutex` and returns.
820  //
821  // Returns true if the timeout has expired without this `CondVar`
822  // being signalled in any manner. If both the timeout has expired
823  // and this `CondVar` has been signalled, the implementation is free
824  // to return `true` or `false`.
825  //
826  // Requires and ensures that the current thread holds the `Mutex`.
828 
829  // CondVar::WaitWithDeadline()
830  //
831  // Atomically releases a `Mutex` and blocks on this condition variable.
832  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
833  // spurious wakeup), or until the deadline has passed, then reacquires
834  // the `Mutex` and returns.
835  //
836  // Deadlines in the past are equivalent to an immediate deadline.
837  //
838  // Returns true if the deadline has passed without this `CondVar`
839  // being signalled in any manner. If both the deadline has passed
840  // and this `CondVar` has been signalled, the implementation is free
841  // to return `true` or `false`.
842  //
843  // Requires and ensures that the current thread holds the `Mutex`.
844  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
845 
846  // CondVar::Signal()
847  //
848  // Signal this `CondVar`; wake at least one waiter if one exists.
849  void Signal();
850 
851  // CondVar::SignalAll()
852  //
853  // Signal this `CondVar`; wake all waiters.
854  void SignalAll();
855 
856  // CondVar::EnableDebugLog()
857  //
858  // Causes all subsequent uses of this `CondVar` to be logged via
859  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
860  // Note: this method substantially reduces `CondVar` performance.
861  void EnableDebugLog(const char *name);
862 
863  private:
867  std::atomic<intptr_t> cv_; // Condition variable state.
868  CondVar(const CondVar&) = delete;
869  CondVar& operator=(const CondVar&) = delete;
870 };
871 
872 
873 // Variants of MutexLock.
874 //
875 // If you find yourself using one of these, consider instead using
876 // Mutex::Unlock() and/or if-statements for clarity.
877 
878 // MutexLockMaybe
879 //
880 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
882  public:
884  : mu_(mu) {
885  if (this->mu_ != nullptr) {
886  this->mu_->Lock();
887  }
888  }
889 
890  explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
892  : mu_(mu) {
893  if (this->mu_ != nullptr) {
894  this->mu_->LockWhen(cond);
895  }
896  }
897 
898  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
899  if (this->mu_ != nullptr) { this->mu_->Unlock(); }
900  }
901 
902  private:
903  Mutex *const mu_;
904  MutexLockMaybe(const MutexLockMaybe&) = delete;
905  MutexLockMaybe(MutexLockMaybe&&) = delete;
906  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
907  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
908 };
909 
910 // ReleasableMutexLock
911 //
912 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
913 // mutex before destruction. `Release()` may be called at most once.
915  public:
917  : mu_(mu) {
918  this->mu_->Lock();
919  }
920 
921  explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
923  : mu_(mu) {
924  this->mu_->LockWhen(cond);
925  }
926 
927  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
928  if (this->mu_ != nullptr) { this->mu_->Unlock(); }
929  }
930 
931  void Release() ABSL_UNLOCK_FUNCTION();
932 
933  private:
939 };
940 
941 inline Mutex::Mutex() : mu_(0) {
942  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
943 }
944 
945 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
946 
947 inline CondVar::CondVar() : cv_(0) {}
948 
949 // static
950 template <typename T>
952  typedef bool (T::*MemberType)();
953  MemberType rm = reinterpret_cast<MemberType>(c->method_);
954  T *x = static_cast<T *>(c->arg_);
955  return (x->*rm)();
956 }
957 
958 // static
959 template <typename T>
961  typedef bool (*FuncType)(T *);
962  FuncType fn = reinterpret_cast<FuncType>(c->function_);
963  T *x = static_cast<T *>(c->arg_);
964  return (*fn)(x);
965 }
966 
967 template <typename T>
968 inline Condition::Condition(bool (*func)(T *), T *arg)
969  : eval_(&CastAndCallFunction<T>),
970  function_(reinterpret_cast<InternalFunctionType>(func)),
971  method_(nullptr),
972  arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
973 
974 template <typename T>
975 inline Condition::Condition(T *object,
977  : eval_(&CastAndCallMethod<T>),
978  function_(nullptr),
979  method_(reinterpret_cast<InternalMethodType>(method)),
980  arg_(object) {}
981 
982 template <typename T>
983 inline Condition::Condition(const T *object,
985  const)
986  : eval_(&CastAndCallMethod<T>),
987  function_(nullptr),
988  method_(reinterpret_cast<InternalMethodType>(method)),
989  arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
990 
991 // Register a hook for profiling support.
992 //
993 // The function pointer registered here will be called whenever a mutex is
994 // contended. The callback is given the cycles for which waiting happened (as
995 // measured by //absl/base/internal/cycleclock.h, and which may not
996 // be real "cycle" counts.)
997 //
998 // Calls to this function do not race or block, but there is no ordering
999 // guaranteed between calls to this function and call to the provided hook.
1000 // In particular, the previously registered hook may still be called for some
1001 // time after this function returns.
1002 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1003 
1004 // Register a hook for Mutex tracing.
1005 //
1006 // The function pointer registered here will be called whenever a mutex is
1007 // contended. The callback is given an opaque handle to the contended mutex,
1008 // an event name, and the number of wait cycles (as measured by
1009 // //absl/base/internal/cycleclock.h, and which may not be real
1010 // "cycle" counts.)
1011 //
1012 // The only event name currently sent is "slow release".
1013 //
1014 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1015 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1016  int64_t wait_cycles));
1017 
1018 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
1019 // into a single interface, since they are only ever called in pairs.
1020 
1021 // Register a hook for CondVar tracing.
1022 //
1023 // The function pointer registered here will be called here on various CondVar
1024 // events. The callback is given an opaque handle to the CondVar object and
1025 // a string identifying the event. This is thread-safe, but only a single
1026 // tracer can be registered.
1027 //
1028 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1029 // "SignalAll wakeup".
1030 //
1031 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1032 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1033 
1034 // Register a hook for symbolizing stack traces in deadlock detector reports.
1035 //
1036 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1037 // into, and 'out_size' is the size of the buffer. This function can return
1038 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1039 // to 'out.'
1040 //
1041 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1042 //
1043 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1044 // ability to register a different hook for symbolizing stack traces will be
1045 // removed on or after 2023-05-01.
1046 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1047  "on or after 2023-05-01")
1048 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1049 
1050 // EnableMutexInvariantDebugging()
1051 //
1052 // Enable or disable global support for Mutex invariant debugging. If enabled,
1053 // then invariant predicates can be registered per-Mutex for debug checking.
1054 // See Mutex::EnableInvariantDebugging().
1055 void EnableMutexInvariantDebugging(bool enabled);
1056 
1057 // When in debug mode, and when the feature has been enabled globally, the
1058 // implementation will keep track of lock ordering and complain (or optionally
1059 // crash) if a cycle is detected in the acquired-before graph.
1060 
1061 // Possible modes of operation for the deadlock detector in debug mode.
1062 enum class OnDeadlockCycle {
1063  kIgnore, // Neither report on nor attempt to track cycles in lock ordering
1064  kReport, // Report lock cycles to stderr when detected
1065  kAbort, // Report lock cycles to stderr when detected, then abort
1066 };
1067 
1068 // SetMutexDeadlockDetectionMode()
1069 //
1070 // Enable or disable global support for detection of potential deadlocks
1071 // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
1072 // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
1073 // will be maintained internally, and detected cycles will be reported in
1074 // the manner chosen here.
1076 
1078 } // namespace absl
1079 
1080 // In some build configurations we pass --detect-odr-violations to the
1081 // gold linker. This causes it to flag weak symbol overrides as ODR
1082 // violations. Because ODR only applies to C++ and not C,
1083 // --detect-odr-violations ignores symbols not mangled with C++ names.
1084 // By changing our extension points to be extern "C", we dodge this
1085 // check.
1086 extern "C" {
1088 } // extern "C"
1089 
1090 #endif // ABSL_SYNCHRONIZATION_MUTEX_H_
absl::ReaderMutexLock::ReaderMutexLock
ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:562
obj
OPENSSL_EXPORT const ASN1_OBJECT * obj
Definition: x509.h:1671
ABSL_ASSERT_SHARED_LOCK
#define ABSL_ASSERT_SHARED_LOCK(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:268
absl::Mutex::Mutex
Mutex()
Definition: abseil-cpp/absl/synchronization/mutex.h:941
WriterMutexLock
#define WriterMutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:127
absl::FormatConversionChar::E
@ E
absl::Condition::InternalFunctionType
bool(* InternalFunctionType)(void *arg)
Definition: abseil-cpp/absl/synchronization/mutex.h:745
absl::MuHowS
Definition: abseil-cpp/absl/synchronization/mutex.cc:677
absl::RegisterSymbolizer
void RegisterSymbolizer(bool(*fn)(const void *pc, char *out, int out_size))
Definition: abseil-cpp/absl/synchronization/mutex.cc:125
absl::WriterMutexLock::WriterMutexLock
WriterMutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:594
MutexLock
#define MutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:125
const
#define const
Definition: bloaty/third_party/zlib/zconf.h:230
bool
bool
Definition: setup_once.h:312
absl::MutexLockMaybe::MutexLockMaybe
MutexLockMaybe(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:890
absl::Condition::CallVoidPtrFunction
static bool CallVoidPtrFunction(const Condition *)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2758
absl::MutexLock::MutexLock
MutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:539
invariant
void(* invariant)(void *arg)
Definition: abseil-cpp/absl/synchronization/mutex.cc:308
absl::Time
Definition: third_party/abseil-cpp/absl/time/time.h:642
cv_
std::condition_variable cv_
Definition: client_callback_end2end_test.cc:733
absl::WriterMutexLock::~WriterMutexLock
~WriterMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:605
mutex
static uv_mutex_t mutex
Definition: threadpool.c:34
absl::Mutex
Definition: abseil-cpp/absl/synchronization/mutex.h:131
absl::MutexLock::MutexLock
MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:532
absl::Mutex::WriterUnlock
void WriterUnlock() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:262
AbslInternalMutexYield
void ABSL_INTERNAL_C_SYMBOL() AbslInternalMutexYield()
Definition: abseil-cpp/absl/synchronization/mutex.cc:73
absl::Mutex::WriterLockWhen
void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:322
absl::Condition::eval_
bool(* eval_)(const Condition *)
Definition: abseil-cpp/absl/synchronization/mutex.h:750
mode
const char int mode
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:135
setup.name
name
Definition: setup.py:542
absl::FormatConversionChar::s
@ s
absl::ReleasableMutexLock::~ReleasableMutexLock
~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:927
run_xds_tests.delete
delete
Definition: run_xds_tests.py:3329
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::OnDeadlockCycle
OnDeadlockCycle
Definition: abseil-cpp/absl/synchronization/mutex.h:1062
absl::Mutex::mu_
std::atomic< intptr_t > mu_
Definition: abseil-cpp/absl/synchronization/mutex.h:463
absl::CondVar::operator=
CondVar & operator=(const CondVar &)=delete
absl::base_internal::PerThreadSynch
Definition: abseil-cpp/absl/base/internal/thread_identity.h:49
T
#define T(upbtypeconst, upbtype, ctype, default_value)
true
#define true
Definition: setup_once.h:324
mu_
Mutex mu_
Definition: oob_backend_metric.cc:115
absl::CondVar::Remove
void Remove(base_internal::PerThreadSynch *s)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2470
absl::CondVar::EnableDebugLog
void EnableDebugLog(const char *name)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2456
absl::MutexLockMaybe::MutexLockMaybe
MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:883
benchmark::Condition
std::condition_variable Condition
Definition: benchmark/src/mutex.h:69
absl::Mutex::WriterLock
void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:260
absl::ReleasableMutexLock::ReleasableMutexLock
ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:916
absl::MutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:525
absl::MutexLock::mu_
Mutex *const mu_
Definition: abseil-cpp/absl/synchronization/mutex.h:553
absl::OnDeadlockCycle::kIgnore
@ kIgnore
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::msg
const char * msg
Definition: abseil-cpp/absl/synchronization/mutex.cc:272
absl::CondVar::WaitCommon
bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2552
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
generate-asm-lcov.fn
fn
Definition: generate-asm-lcov.py:146
absl::WriterMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:587
mu
Mutex mu
Definition: server_config_selector_filter.cc:74
absl::MutexLockMaybe::~MutexLockMaybe
~MutexLockMaybe() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:898
ABSL_SHARED_TRYLOCK_FUNCTION
#define ABSL_SHARED_TRYLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:250
absl::Condition::arg_
void * arg_
Definition: abseil-cpp/absl/synchronization/mutex.h:753
cond
static uv_cond_t cond
Definition: threadpool.c:33
ABSL_TSAN_MUTEX_CREATE
#define ABSL_TSAN_MUTEX_CREATE(...)
Definition: abseil-cpp/absl/base/internal/tsan_mutex_interface.h:55
absl::internal::identity::type
T type
Definition: abseil-cpp/absl/base/internal/identity.h:27
absl::Condition::GuaranteedEqual
static bool GuaranteedEqual(const Condition *a, const Condition *b)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2774
arg
Definition: cmdline.cc:40
ABSL_EXCLUSIVE_TRYLOCK_FUNCTION
#define ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:243
absl::Condition::Condition
Condition(const T *obj)
Definition: abseil-cpp/absl/synchronization/mutex.h:726
absl::Duration
Definition: third_party/abseil-cpp/absl/time/time.h:159
absl::CondVar::~CondVar
~CondVar()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2462
absl::synchronization_internal::KernelTimeout
Definition: abseil-cpp/absl/synchronization/internal/kernel_timeout.h:44
absl::Condition::InternalMethodCallerType
bool(* InternalMethodCallerType)(void *arg, InternalMethodType internal_method)
Definition: abseil-cpp/absl/synchronization/mutex.h:747
absl::ReaderMutexLock::ReaderMutexLock
ReaderMutexLock(Mutex *mu, const Condition &cond) ABSL_SHARED_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:566
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
absl::MutexLock::~MutexLock
~MutexLock() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:550
absl::Condition::Eval
bool Eval() const
Definition: abseil-cpp/absl/synchronization/mutex.cc:2769
absl::RegisterMutexTracer
void RegisterMutexTracer(void(*fn)(const char *msg, const void *obj, int64_t wait_cycles))
Definition: abseil-cpp/absl/synchronization/mutex.cc:116
absl::Condition
Definition: abseil-cpp/absl/synchronization/mutex.h:663
absl::Mutex::MuHow
const struct MuHowS * MuHow
Definition: abseil-cpp/absl/synchronization/mutex.h:445
absl::Condition::CastAndCallMethod
static bool CastAndCallMethod(const Condition *c)
Definition: abseil-cpp/absl/synchronization/mutex.h:951
rm
static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql)
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/upb.c:1477
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
absl::SynchWaitParams
Definition: abseil-cpp/absl/synchronization/mutex.cc:478
absl::Mutex::WriterTryLock
bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true)
Definition: abseil-cpp/absl/synchronization/mutex.h:264
ABSL_INTERNAL_C_SYMBOL
#define ABSL_INTERNAL_C_SYMBOL(x)
Definition: third_party/abseil-cpp/absl/base/config.h:172
absl::RegisterMutexProfiler
void RegisterMutexProfiler(void(*fn)(int64_t wait_cycles))
Definition: abseil-cpp/absl/synchronization/mutex.cc:112
absl::CondVar::CondVar
CondVar()
Definition: abseil-cpp/absl/synchronization/mutex.h:947
absl::CondVar::Wait
void Wait(Mutex *mu)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2628
absl::WriterMutexLock::WriterMutexLock
WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:589
absl::ConstInitType
ConstInitType
Definition: abseil-cpp/absl/base/const_init.h:69
absl::out_size
char int out_size
Definition: abseil-cpp/absl/synchronization/mutex.h:1048
absl::ReaderMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:560
func
const EVP_CIPHER *(* func)(void)
Definition: cipher_extra.c:73
ABSL_EXCLUSIVE_LOCK_FUNCTION
#define ABSL_EXCLUSIVE_LOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:207
absl::Condition::kTrue
static const Condition kTrue
Definition: abseil-cpp/absl/synchronization/mutex.h:730
cv
unsigned cv
Definition: cxa_demangle.cpp:4908
absl::RegisterCondVarTracer
void RegisterCondVarTracer(void(*fn)(const char *msg, const void *cv))
Definition: abseil-cpp/absl/synchronization/mutex.cc:121
absl::flags_internal
Definition: abseil-cpp/absl/flags/commandlineflag.h:40
ReaderMutexLock
#define ReaderMutexLock(x)
Definition: bloaty/third_party/re2/util/mutex.h:126
absl::ReleasableMutexLock
Definition: abseil-cpp/absl/synchronization/mutex.h:914
absl::CondVar
Definition: abseil-cpp/absl/synchronization/mutex.h:798
absl::Mutex::WriterLockWhenWithDeadline
bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:386
absl::ReaderMutexLock::~ReaderMutexLock
~ReaderMutexLock() ABSL_UNLOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:577
google::protobuf.internal::Mutex
WrappedMutex Mutex
Definition: bloaty/third_party/protobuf/src/google/protobuf/stubs/mutex.h:113
absl::ReaderMutexLock::mu_
Mutex *const mu_
Definition: abseil-cpp/absl/synchronization/mutex.h:580
absl::Condition::Condition
Condition()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2749
arg
struct arg arg
absl::CondVar::cv_
std::atomic< intptr_t > cv_
Definition: abseil-cpp/absl/synchronization/mutex.h:867
absl::ReleasableMutexLock::ReleasableMutexLock
ReleasableMutexLock(Mutex *mu, const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
Definition: abseil-cpp/absl/synchronization/mutex.h:921
absl::CondVar::SignalAll
void SignalAll()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2689
ABSL_SHARED_LOCK_FUNCTION
#define ABSL_SHARED_LOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:218
absl::CondVar::WaitWithDeadline
bool WaitWithDeadline(Mutex *mu, absl::Time deadline)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2624
ABSL_ATTRIBUTE_COLD
#define ABSL_ATTRIBUTE_COLD
Definition: abseil-cpp/absl/base/attributes.h:463
ABSL_ASSERT_EXCLUSIVE_LOCK
#define ABSL_ASSERT_EXCLUSIVE_LOCK(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:261
absl::EnableMutexInvariantDebugging
void EnableMutexInvariantDebugging(bool enabled)
Definition: abseil-cpp/absl/synchronization/mutex.cc:747
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
absl::WriterMutexLock::mu_
Mutex *const mu_
Definition: abseil-cpp/absl/synchronization/mutex.h:608
absl::out
char * out
Definition: abseil-cpp/absl/synchronization/mutex.h:1048
absl::Mutex::WriterLockWhenWithTimeout
bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) ABSL_EXCLUSIVE_LOCK_FUNCTION()
Definition: abseil-cpp/absl/synchronization/mutex.h:366
absl::CondVar::Signal
void Signal()
Definition: abseil-cpp/absl/synchronization/mutex.cc:2649
absl::Mutex::Mutex
Mutex(const volatile Mutex *)
Definition: abseil-cpp/absl/synchronization/mutex.h:497
absl::ABSL_DEPRECATED
ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " "on or after 2023-05-01") void RegisterSymbolizer(bool(*fn)(const void *pc
absl::Condition::CastAndCallFunction
static bool CastAndCallFunction(const Condition *c)
Definition: abseil-cpp/absl/synchronization/mutex.h:960
method
NSString * method
Definition: ProtoMethod.h:28
ABSL_UNLOCK_FUNCTION
#define ABSL_UNLOCK_FUNCTION(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:228
absl::OnDeadlockCycle::kAbort
@ kAbort
absl::Condition::function_
InternalFunctionType function_
Definition: abseil-cpp/absl/synchronization/mutex.h:751
ABSL_LOCKABLE
#define ABSL_LOCKABLE
Definition: abseil-cpp/absl/base/thread_annotations.h:183
absl::SetMutexDeadlockDetectionMode
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)
Definition: abseil-cpp/absl/synchronization/mutex.cc:762
absl::CondVar::WaitWithTimeout
bool WaitWithTimeout(Mutex *mu, absl::Duration timeout)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2620
absl::MutexLockMaybe
Definition: abseil-cpp/absl/synchronization/mutex.h:881
timeout
uv_timer_t timeout
Definition: libuv/docs/code/uvwget/main.c:9
absl::Condition::method_
InternalMethodType method_
Definition: abseil-cpp/absl/synchronization/mutex.h:752
ABSL_SCOPED_LOCKABLE
#define ABSL_SCOPED_LOCKABLE
Definition: abseil-cpp/absl/base/thread_annotations.h:196
absl::MutexLockMaybe::mu_
Mutex *const mu_
Definition: abseil-cpp/absl/synchronization/mutex.h:903
absl::OnDeadlockCycle::kReport
@ kReport
absl::Condition::InternalMethodType
bool(Condition::* InternalMethodType)()
Definition: abseil-cpp/absl/synchronization/mutex.h:746
absl::CondVar::Wakeup
void Wakeup(base_internal::PerThreadSynch *w)
Definition: abseil-cpp/absl/synchronization/mutex.cc:2636


grpc
Author(s):
autogenerated on Fri May 16 2025 02:59:31